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We explore two primary ways to maneuver oscillating flexible plates in a potential flow: (1)
pitch bias; and (2) asymmetric oscillating stiffness. Pitch bias will inherently provide a nonzero
lift coefficient due to an average nonzero angle of attack. Alternatively, asymmetric stiffness
oscillations give rise to a so-called "power stroke" which generates high positive (negative)
lift during a portion of the motion, and a low negative (positive) lift during the other portion.
We find that, with biased pitch the behavior followed that of thin airfoil theory superimposed
onto an oscillating system for a rigid flat plate, but adding flexibility attenuated the added lift.
Through oscillating flexibility, we were able to generate equal or higher average lift to the system
with stiffness oscillations up to 50%. Ultimately, through combined pitch bias and asymmetric
stiffness we were able to achieve a lift coefficient of 𝐶𝐿 = 3.6, which exceeded the isolated pitch
bias and asymmetric lift cases.

I. Nomenclature

𝐶𝐿 = coefficient of lift
𝐶𝑇 = coefficient of thrust
𝑑 = plate thickness
𝐸 = Young’s modulus
ℎ0 = heave amplitude
𝐼 = area moment of inertia
𝐿 = plate length
ℓ = dimensional lift
𝑝 = pressure
𝑝∞ = atmospheric pressure
𝑅 = solid to fluid mass ratio
𝑆 = stiffness ratio
𝑆0 = stiffness oscillation amplitude
𝑈 = freestream velocity
𝑤 = plate width
𝑌 = transverse plate displacement
𝛼 = pitch bias
𝜂 = Froude efficiency
𝜃0 = maximum pitch amplitude
𝜌 𝑓 = fluid density
𝜌𝑠 = solid density
𝜇 = fluid dynamic viscosity
𝜎 = reduced driving frequency, 𝜎 = 𝜋 𝑓 𝐿/𝑈
𝜙 = Prandtl’s acceleration potential, 𝜙 = 𝑝∞ − 𝑝

𝜙𝑆 = stiffness phase
(·) = (accent) time average
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Fig. 1 Schematic of thrust from a periodically pitching and heaving flexible foil in a crossflow.

II. Introduction
Oscillating foils are consistently used by nature in both swimming and flying as a propulsion mechanism. As shown

in figure 1, a forward moving foil can produce thrust force with periodic oscillation due to the foil lateral velocity.
Unsteady propulsion methods are increasingly being used for propulsion of human-built uncrewed vehicles due to
their their promising propulsive properties compared to traditional methods like propellers. These methods are heavily
inspired by biological swimmers and fliers [1]. Through observation we know that swimmers can change their effective
shape and camber while swimming, which is suggestive of active muscle usage while swimming to potentially change
performance. We extend the work of [2] to study the ability of biological swimmers or fliers to generate lift as a means
to maneuver while swimming or flying.

Traditionally, studies have focused on the thrust and efficiency of these types of propulsors in rectilinear swimming.
However, much less attention has been given to maneuvering forces, as in producing non-zero net side force or lift.
(Note here, lift is defined as being orthogonal to the the swimming direction and not necessarily the instantaneous
effective velocity into the foil). Our aim is to explore two different ways to produce net lift force for the purpose of
maneuvering: (1) biasing static pitch; and (2) asymmetric oscillation of flexibility. It is important to recognize that
another realistic strategy to generate side force would be through asymmetric motion, however with this solution method,
and the lack of nonlinearities and flow separation, asymmetric motion would not necessarily lead to non-zero side force.
In future studies we are considering full Navier-Stokes solvers to compare these three strategies more applicably.

The study of biological swimmers’ fluid dynamics is tied to rigid-wing flutter theory. Theodorsen [3] first modeled
the forces of oscillating foils in fluid, with Garrick [4] extending this to predict thrust and power for rigid oscillating
foils, highlighting the link to swimmers. Chopra and Kambe [5] later factored in three-dimensionality effects. Anderson
et al. [6] used particle image velocimetry to determine thrust and power of oscillating foils and cross-referenced these
findings with inviscid theory predictions. More recently, Floryan et al. [7] confirmed propulsive scaling laws for rigid
two-dimensional foils undergoing heaving and pitching, further extending this to combined movements [1].

The passive flexibility of an oscillating propulsor significantly influences its propulsion efficiency. Wu [8] was
among the first to consider passive flexibility analytically, which was further explored by Katz and Weihs [9, 10] when
they calculated fluid–structure interactions for a flexible foil. Numerous analytical, experimental, and computational
studies have since confirmed the impact of propulsor flexibility on thrust and swimming efficiency, demonstrating that
flexibility often significantly boosts thrust and efficiency compared to rigid propulsors [11–17]. Floryan and Rowley [18]
further studied resonance in constant-stiffness propulsors, noting its benefits for thrust and power, though not necessarily
for efficiency. This was expanded upon by [19, 20], who examined the role of nonlinearity in fluid–structure systems.

Studies on propulsor flexibility beyond uniform and passive types are sparse. Floryan and Rowley [20] considered
stiffness distribution and found that more stiffness towards the leading edge increased thrust but decreased efficiency.
Quinn and Lauder [21] examined tunable stiffness, demonstrating that it could optimize performance parameters.
Notably, only three works have considered time-varying stiffness synchronized with the kinematics. Hu et al. [22] used
a model of a flexible plate behaving as a rigid propulsor with a time-varying torsional spring, enhancing both thrust and
efficiency in swimming. Shi et al. [23] studied changing flexibility in nonlinear beams relevant to micro-air vehicles.
Yudin et al. [2] modified the method from Moore [24] to account for time-periodic stiffness distributions.

Using lift as a means to maneuver swimming and flying vehicles has received less attention in literature. Read
et al. [25] studied the effects of pitch biasing to generate a nonzero average lift coefficient over a flapping cycle of a
NACA0015 airfoil, varying pitch bias over a large range. They found that increasing the bias angle increases average lift
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Fig. 2 A two-dimensional flat plate with time-varying Young’s modulus moving through a fluid.

generation per cycle and reduces average thrust, and large drag forces can be generated which can be used for braking.
In this work, we study the effect of (1) biasing static pitch; and (2) asymmetric oscillating flexibility as means of

generating nonzero lift values over a single flapping cycle. We use the semi-analytical approach described in [24],
modified as in [2] in order to account for time-varying stiffness and arbitrary heaving/pitching kinematics.

While our ultimate aim is to provide a basis for maneuvering in technologies that utilize unsteady propulsion, we
also aim to connect our results to the biological community. There is evidence to indicate that swimmers and fliers can
change their camber during swimming or flying, respectively [26, 27]. There is no conclusion that they make use of
muscle actuation on the time scale of a single flap cycle [28]. But there are studies that show that bats change the camber
of their wings during flight due to the aerodynamic loads they experience [29, 30]. This could be weakly modeled by
modulating the stiffness of the plate to account for the camber response of the thin membrane wing. It is possible that
our simple aero- and hydrodynamic models can provide motivating evidence for biologists to look for these behaviors in
animals while maneuvering.

III. Problem statement and solution methods
We consider a two-dimensional inextensible flat plate submerged in a fluid flow. We model this plate as an

Euler-Bernoulli beam set in an inviscid fluid. The plate is a model for fins, wings, or propulsors of swimming and
flying animals. This setup is shown in 2. Under these assumptions the system is governed by the Euler-Bernoulli beam
equation and the Euler equations for the fluid flow. The Euler equations are linearized in the small-amplitude limit, for
which details are given in [2]. This type of swimming is applicable to thunniform swimmers like a dolphin.

We study two cases of maneuvering, each of which is modeled using the method laid out in [2] appendix A. Pitch
biasing is achieved by setting the zeroth Fourier mode of the pitching input to a nonzero value, and asymmetric stiffness
is achieved by oscillating the stiffness of the plate at the same frequency as the sinusoidal heave and pitch inputs.

We nondimensionalize the equations of motion using the half-length of the plate 𝐿/2 as the length scale, the
freestream velocity 𝑈 as the velocity scale, and the convective time 𝐿/(2𝑈) as the time scale. The key nondimensional
parameters are

𝑅 =
𝜌𝑠𝑑

𝜌 𝑓 𝐿
, 𝑆(𝑡) = 𝐸 (𝑡)𝑑3

𝜌 𝑓𝑈
2𝐿3 , 𝜙 = 𝑝∞ − 𝑝. (1)

The function 𝜙 is Prandtl’s acceleration potential [8]. The mass ratio 𝑅 is the ratio of a characteristic mass of the plate
to a characteristic mass of fluid, and the stiffness ratio 𝑆 is the ratio of a characteristic bending force to a characteristic
fluid force. The stiffness ratio, its inverse, and variations of it are sometimes called the Cauchy number [31, 32] or the
elastohydrodynamical number [33].

The heave and pitch kinematics are defined as Fourier series, and can be an arbitrary periodic function

ℎ(𝑡) =
∞∑︁

𝑚=−∞
ℎ̂𝑚𝑒

𝑗𝑚𝜎𝑡 , (2a)

𝜃 (𝑡) =
∞∑︁

𝑚=−∞
𝜃𝑚𝑒

𝑗𝑚𝜎𝑡 . (2b)
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Fig. 3 Kinematics of a heaving plate actuated at its first resonant frequency of 𝜎 = 3.1. Shown is a plate with
constant stiffness, color coded to represent the pressure difference across the top and bottom of the plate. Here,
𝑆 = 20, ℎ0 = 1, and 𝑅 = 0.01.

For sinuisoidal heave, pitch, and stiffness, they take the form

ℎ(𝑡) = 1
2
(
ℎ0𝑒

𝑗 𝜎𝑡 + ℎ∗0𝑒
− 𝑗 𝜎𝑡

)
, (3a)

𝜃 (𝑡) = 1
2
(
𝜃0𝑒

𝑗 𝜎𝑡 + 𝜃∗0𝑒
− 𝑗 𝜎𝑡

)
, (3b)

𝑆(𝑡) = 𝑆 + 𝑆

2

(
𝑆0𝑒

2 𝑗 𝜎𝑡 + 𝑆∗0𝑒
−2 𝑗 𝜎𝑡

)
, (3c)

where ℎ0, 𝜃0, 𝑆0 ∈ C, 𝑗 =
√
−1, and a superscript ∗ denotes complex conjugation. The formulation in the appendices,

however, is valid for generic smooth periodic functions of time. We make use of the parameter 𝜙𝑆 = arg(𝑆0), the
phase of the stiffness oscillation. Note that |𝑆0 | gives the amplitude of the stiffness oscillation as a fraction of the mean
stiffness; for example, 𝑆0 = 0.5 means that the stiffness oscillates with an amplitude that is 50% of the mean stiffness.
For a physically meaningful (i.e., positive) stiffness, we require |𝑆0 | < 1 For the plots in the paper we use ℎ0 = 1, 𝜃0 = 0,
𝑆 = 20, and 𝑅 = 0.01.

We are interested in the lift generated by the motion of the plate and the fluid flow around it. We define the coefficient
of lift as

𝐶𝐿 =

∫ 1

−1
Δ𝑝𝑑𝑥, (4)

for small deflection angles. We relate the coefficient of lift to the dimensional lift as 𝐶𝐿 = ℓ/ 1
2 𝜌 𝑓𝑈

2𝐿𝑤.

IV. Results
To begin, we introduce the propulsive properties of a swimming plate that can passively deform under external

forces. Figure 3 shows the motion of a passively flexible plate oscillating at its leading edge. We plot a single period of
motion and color code the length of the plate by the pressure difference across it. We can see during the downstroke the
plate generates a high positive pressure difference on the latter half of its chord, and a high negative difference during
the upstroke. In this framework, the higher the pressure difference across the plate, the higher the lift generation. In
reality, it is a balance between the local slope of the plate and the pressure difference. Note that the lift generated on the
upstroke is canceled out by the lift generated during the downstroke, so the net lift over one period is zero.

There are systems in both nature and industrial applications that might have active stiffness—which was studied in
[2] for time-periodic stiffness. Oscillating the stiffness of the foil at the timescale of the kinematics can have a dramatic
impact on the forces generated by the foil. By oscillating the stiffness 𝑆 of the plate at twice the frequency of the input
motions 𝜎 we achieve rectilinear swimming motion that can produce up to 35% more thrust than an equivalent plate
with constant stiffness. At resonance we see a high increase in thrust from the time-periodic stiffness plate compared to
the constant stiffness case. We also gain thrust before and slightly after the first resonance. In figure 4a we compare the
thrust generated by a plate with constant stiffness to a plate with the same mean stiffness, but oscillating sinusoidally at
twice the input frequency 𝜎. In figure 4b We compare the efficiency of the same plates as a function of input frequency.
Notice the efficiency of both plates are very similar. Near resonance the time-periodic stiffness plate is less efficient
than the constant stiffness case, but only marginally. This indicates that high thrust increases can be gained with little
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Fig. 4 (a) Thrust coefficient as a function of reduced frequency 𝜎 for a flapping plate with constant stiffness and
time-periodic stiffness. (b) Average efficiency as a function of reduced input frequency 𝜎. For both plots 𝑆 = 20.

impact on efficiency. This provides the basis for using stiffness oscillation to manipulate the lateral forces produced by a
periodic foil.

Now that we better understand the basic rectilinear swimming systems with zero mean side force, we consider the
results of studies aimed at exploring the impact of static pitch biasing and asymmetric stiffness on maneuvering forces
of an oscillating plate. In the following sections, we consider either having a statically biased pitch on the plate or
asymmetric stiffness oscillation.

A. Pitch bias
Pitch bias is the most straightforward way to generate nonzero lift forces for unsteady propulsion. It gives the plate a

nonzero angle of attack on average over a flapping cycle. This provides a nonzero lift force similar to quasi-steady
lift-generating plates. Figure 5a shows the instantaneous lift of a plate with a pitch bias of 𝛼 = 15◦. The kinematic
parameters for this case are as follows: ℎ0 = 1, 𝜃0 = 0, 𝑆 = 20, and 𝜎 = 2.5 The pitch bias shifts the lift curve up,
causing the average lift to be nonzero. The average lift coefficients over a range of frequencies is shown in figure 5b.
We see a clear resonant peak at around 𝜎 = 2.3, where the plate achieves high deflections, which in turn create large
pressure differences across the plate and vice versa. Largely, across resonance of the system we see the biased pitch add
a relatively constant non-zero lift coefficient for all frequencies tested.

Note that, increasing the pitch bias will increase the lift generated in one flapping cycle up to the point of the
separation of the flow. Due to the assumption the flow stays attached along the entire plate we present only pitch biases
where the attached flow is a reasonable assumption. We will use quasi-steady limits of angled flat plates for boundaries
on our peak angles of attack.

Here we need to recognize that the above case was an heave-oscillating flexible flat plate with pitch bias. This means
that the role of flexibility and unsteadiness are impacting the lift generation. In the simplest form of lift generation
for a rigid flat plate, we consider steady thin airfoil theory. Here, the lift goes simply as 𝐶𝐿 = 2𝜋𝛼 until angles are
high enough to reach separation. We can test the role that flexibility plays on this by gradually making a statically
pitched plate more flexible, as shown in figure 6a. Here we see that our solution method reproduces the results of
thin airfoil theory with a rigid plate, but as we reduce the stiffness of the plate we continuously lose lift generation.
This makes sense, as the more flexible the plate is, the less effective camber it has, since the angle of attack is only
enforced at the leading edge. We can see from figure 6b that as we approach a completely rigid plate the coefficient
of lift approaches that predicted by the thin airfoil theory. As we decrease stiffness the lift decreases logarithmically
between 100 < 𝑆 < 101, and sublogarithmically outside of this range. However, for a given stiffness, the 𝐶𝐿 verse 𝛼

behavior is linear, but with a different slope than that defined by thin airfoil theory.
As a side note, we examine the effect of a rigid plate with a constant pitch angle that is also heaving up and down

periodically. As it turns out the lift it generates over one cycle is simply 𝐶𝐿 = 2𝜋𝛼; i.e adding unsteady motion to the
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Fig. 5 (a) Lift coefficient as a function of time for a pitched biased flapping plate with constant stiffness in time
compared to a plate with no pitch bias. The equivalent plate with no pitch bias produces zero net lift. Here
𝜎 = 2.5 The average lift over one flapping cycle is 𝐶𝐿 = 1.4871 (b) Average lift coefficient as a function of reduced
input frequency 𝜎. For both plots 𝛼 = 𝜋/12, and 𝑆 = 20.
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Fig. 6 (a) Coefficient of lift as a function of the angle of attack 𝛼 as we decrease the stiffness from a rigid plate to
a very flexible plate. The rigid plate follows the theory of thin airfoils: 𝐶𝐿 = 2𝜋𝛼. As we reduce the stiffness of
the plate we continually reduce the lift coefficient from the ideal lift predicted by the theory. (b) Coefficient of lift
as a function of the mean stiffness of the plate.
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Fig. 7 (a) Lift coefficient as a function of time for two time-periodic stiffnesses out of phase by 𝜋 radians from
each other. Here 𝜎 = 2.5 The average coefficient of lift for the red dashed plate is 𝐶𝐿 = −0.5760. The average
coefficient of lift for the dashed blue plate is 𝐶𝐿 = 0.5760. (b) Average lift coefficient as a function of reduced
input frequency 𝜎. For both plots 𝑆 = 20, ℎ0 = 1, 𝜃0 = 0 and 𝑆0 = 0.5.

static angle for a rigid plate did not impact the steady thin airfoil theory results. This is not to say that unsteadiness
cannot impact lift generation, as there may be added-mass consequences and attenuation to the circulation through the
Theodorsen function at much higher frequencies. However, these frequencies near the first mode of resonance for a
typically flexible system are representative of both biology and technology.

B. Asymmetric stiffness
Now we discuss the effect of time-varying stiffness on lift forces generated by a plate heaving with symmetric

heave inputs, and with no pitch biasing. Of course, a plate with constant stiffness in this case will generate zero lift on
average per cycle. By changing the stiffness of the plate with time we can essentially create a "power-stroke"; part of the
flapping cycle is stiffer, which creates higher pressure forces, and in turn, lift. The other part of the cycle is less stiff
and generates less lift in the opposite direction, which in turn creates a nonzero average lift over one cycle. In [2] the
focus is about stiffness oscillations that are symmetric about one flapping cycle, which will generate equal and opposite
lift forces on each half of the up-down motions. This is achieved by oscillating the stiffness at twice that of the input
heave and pitch motion. In this paper, we oscillate the stiffness at the same frequency as the inputs, as to achieve an
asymmetric up-down stiffness distribution.

Figure 7a shows the instantaneous lift of three plates: one with constant stiffness (black) and two with time-periodic
stiffness (dashed blue and dashed red). The dashed blue plate oscillates its frequency in-phase with the heaving
frequency 𝜎, while the dashed red plate oscillates stiffness 𝜋 radians out of phase of the heave kinematics. The average
lift coefficients over a range of frequencies is shown in figure 7b. We see a clear resonant peak at around 𝜎 = 2.3, where
the plate achieves high deflections, which in turn create large pressure differences across the plate and vice versa.

The average lift as a function of input frequency 𝜎 generated by the red dashed plate is the reflected function of the
blue dashed plate. This is due to the stiffness phase offset of 𝜋 radians; the blue red plate is stiff on the upstroke and the
blue plate is stiff on the downstroke, producing opposite signed net average lift. Ultimately, asymmetric stiffness is
largely capable of producing lift forces, though slightly lower in comparison to biased pitching and with much larger
dependence on driving frequency.

It is clear that the timing of the stiffness oscillation is important. However, until this point, only two stiffness
oscillation phases have been considered: in phase and out of phase with the kinematics. We investigate whether there
is a particular phase that maximizes thrust or efficiency. In figure 8, lift is plotted on a polar plot with frequency 𝜎

on the radial axis and stiffness phase offset 𝜙𝑠 on the azimuthal axis. We see a clear peak in lift generation between
7𝜋/6 < 𝑆𝜙 < 4𝜋/3. But here we consider positive lift as maneuvering upwards, and negative lift as maneuvering
downwards. Notice the 𝜋 radian anti-symmetry; if we want to begin moving up, all we must do is rotate our stiffness
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Fig. 8 Lift coefficient (color contour) as a function of driving frequency 𝜎 (radial axis) and stiffness phase 𝑆𝜙

(aximuthal axis). Here, 𝑆 = 20, ℎ0 = 1, 𝜃0 = 0, and 𝑆0 = 0.25.
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Fig. 9 Coefficient of lift as a function of driving frequency 𝜎. Here, we use the previous analysis to pick the
ideal lift generating parameters of 𝑆𝜙 = 3.9 radians 𝛼 = 𝜋/12 radians, and 𝑆0 = 0.5. The kinematic inputs are
ℎ0 = 1, and 𝜃0 = 0.1. The phase difference between the heave and pitch is 3𝜋/2.

phase by 180𝑜, which is purely a parameter and not a kinematic input.
This implies that, in a realistic swimming scenario you would choose the frequency of your propulsor to get the

thrust and efficiency characteristics that you need. At this point, you could then oscillate your stiffness to generate
considerable non-zero side force, and begin to maneuver. The phase of this stiffness oscillation is directly a function of
the kinematic frequency in this coupled system.

C. Combined pitch bias and asymmetric stiffness oscillation
Here we compare the lift generation of the best of the last two sections: pitch bias and time-periodic stiffness to

see how much of a benefit we can achieve over a rigid thin airfoil. Taking the best stiffness phase from figure 8 to be
around 𝑆𝜙 = 3.9 radians, a pitch bias 𝛼 = 𝜋/12 radians, and a stiffness oscillation amplitude 𝑆0 = 0.5, This gives us a
maximum lift coefficient, plotted in figure 9 we see a resonant peak appear at 𝜎 = 3.9, generating a peak lift coefficient
𝐶𝐿 = 3.6. This shows us that even though adding flexibility to a flat plate will reduce its lift in the steady case, in the
unsteady case where we can heave and pitch and change stiffness in time, the flexible plate can generate even higher lift
than thin airfoil theory predicts.
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V. Conclusions
In this work we introduce the concept of generating lifting forces of flexible flat plates as a simplified model for

oscillating propulsors both in biological and technological systems. We show how when they are heaving and deflecting
with a constant stiffness they do not generate any net lift.

The simplest method to allow these heaving and pitching plates to generate a net lift is to have a bias pitch at the
leading edge. This is essentially adding an angle of attack to the plate, which would obviously generate lift. We found
that this biased lift at the frequencies tested in this study followed quasi-steady thin airfoil theory, despite the addition
of unsteady heaving. Flexibility did act to attenuate this lift, but the lift still behaved linearly with added pitch angle.
Note that these results only apply up to the point of separation of a realistic system, and at higher frequencies we would
expect a larger role of added mass forcing and lift attenuation as described by the Theodorsen function.

Additionally, we introduced the concept of asymmetric time-periodic stiffness and how it can be used to generate a
nonzero lift force generation through the use of a power-stroke. Asymmetric oscillation of stiffness led to substantial lift,
on the order of or even exceeding that of biasing the pitch angle. We found that the phase of this time-periodic stiffness
greatly affects the lift generation, and this ideal phase was tied to the oscillation frequency and the stiffness of the plate.

Through combining the pitch bias and the asymmetric stiffness of an oscillating flexible plate, we could achieve the
highest lift coefficient throughout the study of up to 𝐶𝐿 = 3.6. This indicates that a flexible plate—despite attenuating
the impact of the biased pitch—ultimately led to the best scenario for lift generation.

Looking forward, we hope to optimize this parameter space to find the best combination of kinematics, to explore
higher frequencies and the limitations of our conclusions, and to include asymmetric kinematics through simulations
and experiments that include the nonlinearities and separation characteristics in more applied systems.
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