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The long-lasting response of turbulent pipe flow to a step change in surface roughness
from rough to smooth is examined. Global flow characteristics such as the pressure
gradient, skin friction and mean streamwise momentum attain their equilibrium values
within approximately 20 radii downstream of the step change, but the turbulent stresses are
exceedingly slow to adjust to the new wall condition (>120 radii), and they first fall below
their equilibrium values before seemingly asymptoting to the full recovery state. To help
understand this response, we develop a model that captures both the long development
length and the second-order response of the turbulence, and we use a scale decomposition
to connect the large-scale motions to the response behaviour.
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1. Introduction

The response of a wall-bounded flow to a sudden change in surface roughness is of
considerable interest for several reasons. Such flows are common in nature, as when an
offshore wind meets a coastline, or when the wind blows over a changing terrain such
as a change from forest to grassland. They are found in biological flows where fish can
exhibit different surface textures along their length, and in industrial applications where
the roughness height can abruptly vary at the junction between two plates or pipes. Second,
the response to a change in surface roughness is both length and time scale dependent.
Consequently, it provides a severe test of turbulence models.

Previous work on such step changes indicates that the adjustment of the flow to its
new wall condition is often rather slow (Smits & Wood 1985). For example, in a study of a
boundary layer experiencing a change from smooth to rough conditions, Antonia & Luxton
(1971) found that self-preservation (that is, the flow scales with local variables sometimes
referred to as being self-similar) was re-established after approximately 20δ0, where δ0
was the boundary layer thickness at the point where the surface condition changed. For
a step change from rough to smooth conditions (Antonia & Luxton 1972), the relaxation
was far from complete after 16δ0, corresponding to the end of the measurement domain.
In both cases, the relaxation could be described in terms of the growth of an inner layer.
The height of this layer, δi, marks the outward extent of the flow that is influenced by the
new boundary condition, and the rate at which it grows appears to be typical of a thin
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shear layer. For example, Wood (1982) found that for step changes in surface roughness
it increased approximately as x0.8

s , where xs was the distance downstream of the step.
Similar conclusions were reached by Cheng & Castro (2002) and Efros & Krogstad (2011)
regarding the smooth-to-rough response, and by Mulhearn (1978); Chamorro & Porté-Agel
(2009); Loureiro et al. (2010); Hanson & Ganapathisubramani (2016) and Li et al. (2019)
for the rough-to-smooth response. The study by Hanson & Ganapathisubramani (2016),
being the most recent of the rough-to-smooth transition studies, is particularly notable for
its extensive measurements, although the domain of interest was limited to xs/δ0 < 16.4.

It should be noted that these conclusions and observations apply only to boundary layers
(Hanson & Ganapathisubramani (2016) and Li et al. (2019) provide a more complete
literature review), and these investigations have been restricted to distances of no more
than xs/δ0 = 20. Here, we explore instead how a fully developed turbulent pipe flow
responds to a change in wall condition from rough to smooth, and we examine the response
up to a distance of x = xs/R = 120, where R is the radius of the pipe. The response of a
confined flow such as that in a pipe is fundamentally different from that of a boundary
layer, even at a comparable Reynolds number. In essence, the flow near the wall that had
been retarded by the roughness begins to accelerate immediately when the surface changes
to being smooth. By continuity, therefore, the flow across the entire width of the pipe
responds to the change in roughness, and the concept of an internal layer no longer strictly
applies.

We find that the flow is not fully equilibrated even at the farthest downstream station and
that the relaxation displays a second-order response where the Reynolds stresses first fall
below their self-similar levels before slowly approaching them. To help interpret the flow
response, we connect our observations to the equations of motion and develop physical
models of the response by using a scale decomposition.

2. Experimental methods

Experiments were conducted in a straight pipe, radius R = 19.1 mm, filled with water
driven at a bulk velocity of Ub = 3.45 m s−1 resulting in a diameter-based Reynolds
number of ReD = UbD/ν = 1.31 × 105, where D is the pipe diameter and ν is the
kinematic viscosity. The flow is initially developed in a smooth section of length 240R,
passes through a 192R long roughened section with equivalent sand grain roughness
kS = 415 µm or k+ = ksuτ /ν = 66, where uτ is the friction velocity, then back to a smooth
pipe, which marks the start of the test section. Velocity measurements were taken at
x = 4.4 6.4, 9.2, 13.4, 19.4, 28.4, 41.2, 60, 80, 100 and 120, where the step change occurs
at x = 0. The experimental configuration is shown schematically in figure 1(a).

The rough pipe was made using a process originally employed by Nikuradse (1950)
where sand grains of consistent size (54 grit garnet sandblasting media) were fastened to
an aluminium pipe with epoxy. To achieve a homogeneous layer of roughness, the epoxy
was first evenly applied to the inside of the aluminium pipe, and then the pipe was mounted
vertically, filled with the sand grains, and left to dry. Once dry, the loose sand grains were
discarded, leaving an even sand grain layer behind. The equivalent sand grain roughness
was estimated by comparing the measured coefficient of resistance λ – calculated from the
pressure drop measurements in the rough pipe sections – to the data of Nikuradse (1950),
as plotted in the style of Schlichting (1968) in figure 1(b).

Velocity measurements were taken using stereoscopic particle image velocimetry
(SPIV), as shown in figure 1(a). Two 5.5 mega-pixel sCMOS cameras recorded images
of a plane illuminated with a dual-pulsed 50 mJ Nd:YAG laser. The flow was seeded
with 10 µm hollow glass spheres (density 1.1 g cm−3). A water-filled acrylic test section,
designed such that the cameras and laser were normal to their respective acrylic walls,
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FIGURE 1. (a) SPIV experimental schematic and (b) estimation of our equivalent sand grain
roughness by comparing the measured coefficient of resistance λ as it varies with Reynolds
number to the original results from Nikuradse (1950).

surrounded the glass pipe to minimize image distortion. A total of 11 000 image pairs,
acquired at a frequency of 25 Hz, were recorded at each downstream location. Images were
processed in DaVis 8.3 using a multi-pass cross-correlation method with interrogation
window sizes decreasing to a final size of 32 × 32 pixels with 50 % overlap, resulting in
a vector grid spacing of 0.26 mm. In processing the velocity field, the universal outlier
detection algorithm (Westerweel & Scarano 2005) indicated that at least 95 % of the
velocity vectors resulted from the first choice of correlation peaks, while most others were
the second choice with only a few outliers that needed to be removed and interpolated.

Pressure measurements were made in both the rough and smooth pipes using a custom
freestanding manometer, accurate to ±7.7 Pa, which corresponds to a 2.9 % uncertainty
in the pressure gradient, at the worst. To determine the pressure drop in the rough
section (192R long), measurements were made 64R and 128R from the start of the
roughened section. To measure the pressure development downstream of the step, a
custom pipe section was fitted temporarily, consisting of a smooth aluminium pipe fitted
with 20 pressure taps with gradually increased spacing from x = 6, 6.7, 7.3, . . . , 9.3,
10.7, . . . , 17.3, 21.3, . . . , 49.3 radii downstream. The friction velocity of the rough-wall
fully developed flow was measured to be uτr = 0.45 m s−1, and for the smooth-wall fully
developed pipe flow it was uτ0 = 0.16 m s−1.

3. Results

In a fully developed pipe flow, the area- and time-averaged pressure gradient 〈dP/dx〉,
where P is the pressure field, balances the wall shear τw exactly, but when the flow is in
a state of development the streamwise gradient of the momentum flux 〈d(Ux + ux)2/dx〉
also contributes to the force balance. Figure 2 shows the various contributions made by
the momentum gradient, pressure gradient and wall shear in our experiment as the flow
responds to the step change. The development of the area-averaged turbulence kinetic
energy 〈K〉 is also shown. This figure displays relative development, where the pressure
gradient, skin friction and turbulence kinetic energy are normalized by their values at
the farthest downstream location, which is taken as an estimate of the fully relaxed
state. Because the momentum gradient approaches zero far downstream, it is normalized
by the smooth friction velocity and pipe radius. From this point onward, all quantities
are given non-dimensionally, normalized using R and τ0 = ρu2

τ 0, where τ0 is the wall
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FIGURE 2. Streamwise relative development of the pressure gradient, skin friction, streamwise
momentum gradient and the cross-sectional area average of the turbulence kinetic energy. Here,
x = xs/R.

shear stress value expected to occur very far downstream of the step change. (A more
detailed discussion of the pressure distribution can be found in Van Buren, Hellström
& Smits (2019).) We see that for a short region downstream of the step change the
wall shear, momentum gradient and pressure gradient are all lower than in the fully
developed smooth-wall case. These quantities recover relatively quickly, however, and by
x = 20 they have approximately reached their fully developed values. Close inspection
of the turbulence kinetic energy level, however, reveals small oscillations that persist
much further downstream. This oscillatory response of the flow statistics, shown here by
the turbulence kinetic energy, will be referred to throughout the text as a second-order
response (more strictly it is a higher-order response).

The mean flow response is shown in linear and semi-log coordinates in figure 3. Here,
r is the non-dimensional radial coordinate (distance from the pipe centre divided by R).
Downstream of the step, the mean streamwise velocity Ux increases near the wall (due
to the drop in wall stress) and decreases at the centre instantly (due to continuity and the
geometrical constraints of an enclosed flow), almost pivoting about a central point like
a seesaw. This characteristic feature distinguishes enclosed flows, like those in pipes and
channels, from boundary layer flows; perturbed boundary layer flows have the opportunity
to grow, whereas enclosed flows must absorb the change in other ways.

The downstream development of the Reynolds shear stress profiles is shown in figure 4.
Here, y is the non-dimensional distance from the wall (distance from the wall divided
by R). Downstream of the step, the turbulence generally decays rapidly and overshoots
the fully developed values. For a considerable distance – from x = 20 to at least x = 120
downstream – the turbulence is lower than the fully developed smooth-wall case. Adding
to the complexity, the flow towards the wall responds differently than the flow near the
centre, where in the centre the turbulence increases initially before decaying downstream.
Although all Reynolds stresses display a similar response, they decay at different rates
downstream – seen in figure 4(b).

To address how the mean flow response in the pipe impacts the turbulence response, and
why the turbulence shows this very slow, second-order response, we will now examine the
equations of motion in detail.
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FIGURE 3. Mean streamwise velocity profile development in (a) linear and (b) semi-log
plotting style. The red line indicates the log-law slope for the fully developed smooth case.
Note that the mean velocity is normalized by the friction velocity uτ0 for the smooth wall at
the same bulk flow Reynolds number (as are all other velocities, unless otherwise stated) and
y+ = yuτ0/ν.
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θ and ux ur at (i) y = 0.2 and (ii) y = 0.8. The red line is the
profile for a smooth-wall, fully developed pipe flow at this Reynolds number.

3.1. Equations of motion
Consider an incompressible pipe flow in cylindrical coordinates (x, r, θ ) subject to a step
change in surface roughness (rough to smooth) at x = 0. The flow velocity and pressure
are separated into their mean (Ui, P) and fluctuating components (ui, p). We assume that
ensemble averages are steady in time (that is, ∂(·)/∂t = 0) and that they do not vary
in the azimuthal direction (that is, ∂(·)/∂θ = 0), and Uθ = 0. Again, all quantities are
normalized with the smooth-wall fully developed friction velocity uτ0 and pipe radius R.

By conservation of mass,

∂Ux

∂x
+ 1

r
∂ rUr

∂r
= 0,

∂ux

∂x
+ 1

r
∂ rur

∂r
+ 1

r
∂uθ

∂θ
= 0. (3.1a,b)
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FIGURE 5. Mean velocity spatial gradient profiles as they develop downstream.

In figure 5 we compare the downstream development of the spatial gradients of the mean
streamwise and wall-normal velocities. As was shown above (figure 3), the change in
surface roughness causes an acceleration near the wall and a deceleration away from the
wall. This streamwise gradient in Ux is necessarily coupled with a wall-normal gradient of
Ur, where the streamwise acceleration near the wall and deceleration near the centre imply
a positive radial velocity. Despite the non-equilibrium flow developing in the x direction,
the dominant spatial gradient is ∂/∂r for both components of velocity, where ∂Ux/∂r is at
least two orders of magnitude larger than any other gradient.

The streamwise Reynolds-averaged momentum equation is given by

Ux
∂Ux

∂x
+ Ur

∂Ux

∂r
= −∂P

∂x
+ 1

Reτ

∇2 Ux − ∂u2
x

∂x
− 1

r
∂ rux ur

∂r
, (3.2)

where the Reynolds stresses Rij = uiuj, Reτ = uτ0 R/ν and ν is the kinematic viscosity.
When the pressure gradient is constant (which happens relatively quickly as seen in
figure 2), the major contributing terms in (3.2) are the convection (left-hand side) and
the gradients of Reynolds stress, shown in figure 6. The streamwise development of Ux

(figure 6a-i) is primarily governed by the wall-normal gradient of the Reynolds shear
stress (1/r)(∂ rux ur/∂r) (figure 6b-ii), and the remaining terms are small by comparison.

To explore the development of the Reynolds stresses, particularly ux ur, we consider the
governing transport equations. Following Moser & Moin (1984), we interpret the transport
of Reynolds stress as a balance of production, turbulent diffusion, pressure diffusion,
viscous diffusion, pressure strain and viscous dissipation. That is,

DRij

Dt
= Pij︸︷︷︸

Production

+ TDij︸︷︷︸
Turbulent diffusion

+ PDij︸︷︷︸
Pressure diffusion

+ PSij︸︷︷︸
Pressure strain

+ 1
Reτ

VDij︸ ︷︷ ︸
Viscous diffusion

+ 1
Reτ

Dij︸ ︷︷ ︸
Viscous dissipation

.

(3.3)
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FIGURE 6. Transport (i) and Reynolds stress gradients (ii) of Navier–Stokes (3.2).

Here, we focus on the primary shear stress term (Rxr) while the three normal stresses (Rxx ,
Rrr, Rθθ ) are relegated to the appendix A. The terms in (3.3) for Rxr expand to

DRxr

Dt
= Ux

∂ ux ur

∂x
+ Ur

∂ ux ur

∂r
,

Pxr = −u2
r
∂Ux

∂r
− u2

x

∂Ur

∂x
+ urux

Ur

r
,

TDxr = −1
r

∂

∂r
(ru2

r ux) + 1
r
(u2

θux) − ∂

∂x
(uru2

x),

PDxr = −1
r

(
∂rux p

∂r
− ux p

)
− ∂urp

∂x
,

PSxr = p
(

∂ux

∂r
+ ∂ur

∂x

)
,

VDxr = 1
r

∂

∂r

(
r
∂ux ur

∂r

)
+ 1

r2
ux ur + ∂2ux ur

∂x2
,

Dxr = −∂ur

∂x

∂uθ

∂x
− ∂ur

∂r
∂ux

∂r
−
(

1
r

∂ur

∂θ
− uθ

r

)
1
r

∂ux

∂θ
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.4)

We will need to model the pressure terms (PDij and PSij of (3.3)), because we do not have
measurements of the fluctuating pressure, and the viscous dissipation terms (Dij of (3.3)),
because we cannot properly resolve dissipation scales.

The other terms in (3.3) are shown in figure 7 for all downstream locations. Generally,
the convection terms are small compared to the size of the production and turbulent
diffusion terms. Specifically, the term −u2

r (∂Ux/∂r) (figure 7c), which acts as a source of
ux ur, is by far the largest and is likely balanced by the missing pressure strain term which
acts to redistribute the turbulence and make the flow more isotropic, thus being a sink
of ux ur. Note that in fully developed channel flow, the production is almost completely
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FIGURE 7. Transport (a,b), production (c–e) and turbulent diffusion (f –h) terms in the
transport of ux ur (3.3).

balanced by the pressure strain away from the wall (Lee & Moser 2015). The three
turbulent diffusion terms can be meaningful near the step location, but they decay quickly
and mostly cancel one another out, especially toward the pipe centre.

Finally, if we sum the transport of the normal Reynolds stresses Rxx , Rrr and Rθθ (the
details are given in the appendix A), we arrive at the transport equation for turbulence
kinetic energy K:

Ux
∂ K
∂x

+ Ur
∂ K
∂r

= −u2
x

∂Ux

∂x
− urux

∂Ux

∂r
− u2

r
∂Ur

∂r
− urux

∂Ur

∂x
− 1

r
u2

θUr

− 1
2r

∂

∂r

(
ruru2

x − ru3
r − ruru2

θ

)
− 1

2
∂

∂x

(
u3

x − u2
r ux − u2

θux

)
+ 1

Reτ

∇2K + . . . ,

(3.5)
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FIGURE 8. Streamwise development of the Reynolds stresses u2
x (a), u2

r (b), u2
θ (c) and ux ur

(d). Red dashed lines indicate expected asymptotic values of a data set taken with a completely
smooth pipe.

where we show only the contributions from production, turbulent diffusion and viscous
diffusion, while the other terms are bundled in the ellipsis. The experimental results for
the individual components of the turbulence kinetic energy and the primary Reynolds
shear stress are shown in figure 8. All the stresses show similar trends, where the location
nearest the step shows some peak in stress near a wall-normal location of 0.4 that gradually
decays and broadens downstream. This peak occurs because the turbulence first responds
near the wall and then moves toward the centre, thus creating a peak in the outer flow
that moves away from the wall with distance downstream (most clearly seen in figure 8d).
All the stresses then overshoot their expected values (shown by the red dashed line), and
spend a considerable distance (almost 100R) with relatively low turbulence. Even at 120R
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904 A38-10 T. Van Buren and others

downstream, the flow has not yet reached equilibrium. This trend is most exaggerated
in u2

r and ux ur (figure 8b,d), which indicates that the culprit for the overshoot may be
the wall-normal velocity component. Note that the reference data were taken in the same
facility with a completely smooth pipe, but with approximately twice the magnification
and resolution compared to the current data.

Near the pipe centreline, the normal Reynolds stresses (figure 8a–c) initially increase
downstream. It is well known that adverse pressure gradients enhance turbulence (Harun
et al. 2013), and the mechanism is obvious from an inspection of the K transport (3.5).
The production term −u2

x (∂Ux/∂x) is positive when the flow decelerates, and there are no
other terms to balance. Thus, the immediate response of the centreline mean velocity to
the step change – due to continuity – results in an immediate additional production of K,
causing the normal Reynolds stresses to locally increase. The Reynolds shear stress ux ur
does not behave this way because its production (3.4) does not have a ∂Ux/∂x term, and it
also has pressure strain terms that similarly react to mean gradients which could balance
any immediate reaction.

3.2. Estimating the recovery behaviour

3.2.1. Rough estimate
As the flow exits the rough pipe and adapts to the smooth-wall condition, it needs

to dissipate a large amount of excess turbulence kinetic energy �K. To make an initial
estimate of the distance Xr over which this recovery takes place, we assume that the excess
turbulence dissipates at a constant rate ε0. Hence, Xr = (�K/ε0)(Ub/R). The downstream
development will be a function of wall-normal location, given that �K and ε0 both have
wall-normal dependence.

Lower and upper bounds for Xr are given by using either the rough-wall dissipation rate
or the smooth-wall dissipation rate. These dissipation rates were estimated using direct
numerical simulations of turbulent channel flow at Reτ = 5200 (Lee & Moser 2015), and
scaling them with uτr and uτ0 , respectively. Figure 9 shows these estimates which depend
on the wall-normal location. The flow near the wall recovers much faster than the flow in
the outer region, so the overall flow recovery will be set by the slow response of the outer
region. If the turbulence dissipates at the rate given by the rough-wall condition throughout
the entire development region, Xr ≈ 3. If it were to recover at the smooth-wall condition
throughout, Xr ≈ 200. Both scenarios are unlikely, but these estimates show that we may
expect relatively long recovery distances (O(100)), due to the slow dissipation in the outer
layer. Note that adding any level of turbulent production or wall-normal turbulent transport
would only serve to slow the recovery even more.

3.2.2. Theoretical and data-driven model
To obtain better estimates for the recovery behaviour, we use a perturbation analysis

inspired by Smits, Young & Bradshaw (1979), who considered the response of a flat-plate
boundary layer subjected to the sudden onset of wall curvature. In our analysis, outside
of the convective terms in the material derivative, we will neglect streamwise gradients
(∂(·)/∂x ≈ 0). As noted above, and as found by experiment (figures 5–7), changes in
the streamwise direction are generally slow and transport is dominated by wall-normal
gradients. We will also limit our analysis to the outer flow which should govern the rate of
response, so we neglect the viscous stress gradients.
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FIGURE 9. Estimated recovery distance from a simplified scaling argument (shaded region).
Solid red lines represent the relative streamwise development of a perturbation using response
model (3.22) at four wall-normal locations (vertically offset by their wall-normal location).

Under these conditions, the streamwise mean momentum (3.2) becomes

DUx

Dt
= −∂P

∂x
− 1

r
∂ rτ
∂r

, (3.6)

where τ = ux ur = Rxr. We can remove the dependence on pressure by differentiating with
respect to r, and by using continuity we obtain

D
Dt

(
∂Ux

∂r

)
− Ur

r
∂Ux

∂r
= τ

r2
− 1

r
∂τ

∂r
− ∂2τ

∂r2
. (3.7)

Since the transport of ∂Ux/∂r depends solely on the stress τ , we need to consider the
transport of stress (3.3),

Dτ

Dt
= −u2

r
∂Ux

∂r
+ p

(
∂ux

∂r
+ ∂ur

∂x

)
, (3.8)

assuming that turbulent and pressure diffusion are negligible in the outer layer (Lee &
Moser 2015), and that ∂Ur/∂r � ∂Ux/∂r. That is, we retain only the contributions made
by production and pressure strain.

The pressure strain (typically denoted by Πij) is often modelled as the sum of a ‘slow’
and a ‘fast’ term (Πij = Π S

ij + ΠF
ij ), two terms that arise when the pressure fluctuations

are presented in their exact integral form. The fast term interacts with the mean velocity
gradient, thus responding instantly to a change in the mean flow, whereas the slow term
relies only on turbulence quantities that are slower to change (Bernard & Wallace 2002,
§ 2.3). We use the models presented by Rotta (1951) and Crow (1968), where

Π S
xr = −CS

PS
ε

τ

2K
,

ΠF
xr = CF

PS
K

∂Ux

∂r
.

⎫⎪⎪⎬
⎪⎪⎭ (3.9)
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904 A38-12 T. Van Buren and others

Note that the constants associated with pressure strain have a PS subscript. For the
slow response term, CS

PS
is the Rotta constant (commonly CS

PS
= 3). For the fast-response

pressure strain model ΠF
xr, we have applied a constant CF

PS
which will be tuned to match

the fully developed simulation of Lee & Moser (2015). The dissipation is modelled by its
isotropic estimate

ε = K3/2

L , (3.10)

where L is a length scale similar to a mixing length normalized by the pipe radius. It is
assumed to be relatively constant in the outer part of the flow. Substituting (3.9) and (3.10)
to (3.8) results in

Dτ

Dt
= −u2

r
∂Ux

∂r
+ CF

PS
K

∂Ux

∂r
− CS

PS

2LK1/2τ. (3.11)

We now consider perturbations in the mean velocity and stresses according to

Ux = Ux,0 + �Ux , Ur = Ur,0 + �Ur, τ = τ0 + �τ,

u2
x = u2

x,0 + Cx�τ, u2
r = u2

r,0 + Cr�τ, u2
θ = u2

θ,0 + Cθ�τ,

}
(3.12)

where terms with a subscript 0 denote the smooth-wall fully developed profiles (functions
only of r) and Δ terms are modifications that also vary in the streamwise direction. We
will assume that a disturbance in Rii takes the shape of the disturbance Rxr such that
�u2

i ≈ Ci�τ – a necessary assumption for this simplified analysis to work – and that
the components differ only by some constant amplitude multiplier Ci. This assumption is
justified to some extent by the similarities in the stress responses found by experiment, as
shown in figure 8. Introducing these perturbations in (3.7) gives

(Ux,0 + �Ux)
∂

∂x

(
∂Ux,0

∂r
+ ∂�Ux

∂r

)
+ (Ur,0 + �Ur)

∂

∂r

(
∂Ux,0

∂r
+ ∂�Ux

∂r

)

= 1
r2

∂r(τ0 + �τ)

∂r
− 1

r
∂2r(τ0 + �τ)

∂r2
+ (Ur,0 + �Ur)

r
∂(Ux,0 + �Ux)

∂r
. (3.13)

Similarly, (3.8) becomes

(Ux,0 + �Ux)
∂(τ0 + �τ)

∂x
+ (Ur,0 + �Ur)

∂(τ0 + �τ)

∂r

= −(u2
r,0 + Cr�τ)

∂(Ux,0 + �Ux)

∂r
+ CF

PS
K

∂(Ux,0 + �Ux)

∂r
− CS

PS

2LK1/2(τ0 + �τ),

(3.14)

where

K = 1
2

[
u2

x,0 + u2
r,0 + u2

θ,0 + (Cx + Cr + Cθ )�τ
]

= K0 + 1
2(Cx + Cr + Cθ )�τ. (3.15)

By definition, Ur,0 = 0 and ∂(·)0/∂x = 0, and all terms with only subscript 0 satisfy
either (3.8) or (3.7) and can be removed. Linearizing removes �2 terms, and then, by
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Turbulent pipe flow response to a change in roughness 904 A38-13

Taylor series expansion, K1/2 ≈ K1/2
0 + (K−1/2

0 (Cx + Cr + Cθ )�τ)/4 and K3/2 ≈ K3/2
0 +

3(K1/2
0 (Cx + Cr + Cθ )�τ)/4. Thus,

Ux,0
∂2�Ux

∂x∂r
+ �Ur

d2Ux,0

dr2
= �τ

r2
− 1

r
∂�τ

∂r
− ∂2�τ

∂r2
+ �Ur

r
dUx,0

dr
, (3.16)

and

Ux,0
∂�τ

∂x
+ �Ur

dτ0

dr
= −u2

r,0
∂�Ux

∂r
− Cr

dUx,0

dr
�τ + CF

PS
K0

∂�Ux

∂r

+ CF
PS

2
(Cx + Cr + Cθ )

∂Ux,0

∂r
�τ

− CS
PS

2L

[
K1/2

0 + 1
4

K−1/2
0 (Cx + Cr + Cθ )τ0

]
�τ. (3.17)

We can make some additional approximations. In the outer region of turbulent pipe flow,
the mean streamwise velocity curvature ∂2Ux,0/∂r2 is nearly zero and will be neglected.
Second, by continuity, terms convected by �Ux are much larger than terms convected by
�Ur, so the latter terms can be ignored (see also figure 5). With these simplifications, we
are left with

Ux,0
∂2�Ux

∂x∂r
= �τ

r2
− 1

r
∂�τ

∂r
− ∂2�τ

∂r2
, (3.18)

and

Ux,0
∂�τ

∂x
= −u2

r,0
∂�Ux

∂r
− Cr

dUx,0

dr
�τ + CF

PS
K0

∂�Ux

∂r

+ CF
PS

2
(Cx + Cr + Cθ )

∂Ux,0

∂r
�τ

− CS
PS

2L

[
K1/2

0 + 1
4

K−1/2
0 (Cx + Cr + Cθ )τ0

]
�τ. (3.19)

Following Smits et al. (1979), we break �τ into a product of separate functions of x and
r, i.e. �τ(x, r) = T (x)f (r). Unlike Smits et al. (1979), we will not require the disturbance
to take the same wall-normal shape as τ0, which is a poor assumption according to the
results given in figure 8. We then arrive at the final form of the mean-momentum equation,
where

∂

∂x

(
∂�Ux

∂r

)
= T

Ux,0

(
f
r2

− 1
r

∂f
∂r

− ∂2f
∂r2

)
, (3.20)

and the Reynolds stress transport equation,

∂T
∂x

= −
(

u2
r,0 − CF

PS
K0

) 1
f Ux,0

∂�Ux

∂r
− T

Ux,0

{
Cr

∂Ux,0

∂r
− CF

PS

2
(Cx + Cr + Cθ )

∂Ux,0

∂r

+CS
PS

2L

[
K1/2

0 + 1
4

K−1/2
0 (Cx + Cr + Cθ )τ0

]}
. (3.21)
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FIGURE 10. Model (red solid line) from (3.22) compared to experimental measurements
(circles) of ∂�Ux/∂r, where the experiments are averaged over wall-normal locations r =
0.4 − 0.7 and the model is evaluated at that average wall-normal value.

Combining (3.21) and (3.20) to remove the dependence on T , we come to

Ẍ +
{

CrU′
x,0 − CF

PS

2
CtotU′

x,0 + CS
PS

2L

[
K1/2

0 + 1
4

K−12
0 Ctotτ0

]}
1

Ux,0
Ẋ

+
(

u2
r,0 − CF

PS
K0

)( f
r2

− f ′

r
− f ′′

)
1

f U2
x,0

X = 0, (3.22)

where X ≡ ∂�Ux/∂r, ˙(·) denotes ∂(·)/∂x , (·)′ denotes ∂(·)/∂r, and Ctot = Cx + Cr + Cθ .
Given an estimate for the wall-normal shape of the disturbance f , (3.22) is a solvable,
ordinary second-order differential equation which takes the form of a damped simple
harmonic oscillator.

To approximate the disturbance, we assume a parabolic profile f = 1 − 4(r − 0.5)2.
The constants in (3.22) were chosen so that CS

PS
= 3 according to Bernard & Wallace

(2002); CF
PS

= 0.3 to agree with the fully developed results from Lee & Moser (2015); and
Cx ≈ 4, Cr ≈ 1.2 and Cθ ≈ 1.6, so that the Reynolds normal stresses are more impacted
than the Reynolds shear stress in accordance with our measurements. The length scale L
is approximated as R. For the terms with subscript 0, corresponding to the smooth-walled
fully developed profiles, we use the channel flow results of Lee & Moser (2015).

The responses given by this model are shown in figure 9 for four wall-normal locations
in the outer layer. The point at which a disturbance has decayed, according to this model,
occurs toward the higher end of the estimated recovery range, based on constant dissipation
rates, indicating that the dissipation rate follows the smooth pipe value more closely
than the rough pipe value. In figure 10, we see that the model compares well with
the measurements of ∂�Ux/∂r, averaged over the four wall-normal locations. There is
particularly good agreement in the oscillation decay rate and wavelength, except for the
region immediately downstream of the step where our assumptions are likely to be invalid
(specifically that ∂(·)/∂x � ∂(·)/∂r).

The model can also be interpreted more physically. The coefficient on the term that
dictates the rate of decay, Ẋ, is primarily governed by the shape of the fully developed
profiles (subscript 0) and the disturbance amplitudes; while the coefficient on the term that
dictates the oscillation behaviour, X, is the only one where the disturbance shape appears.
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Thus, the nature of the response is determined by the shape of the disturbance, so it will
depend on the wall-normal location.

The choice of the disturbance shape and the assumptions regarding its behaviour are not
trivial. Here, we have assumed the disturbance takes a parabolic shape, that it develops
downstream by changing amplitude while preserving its shape, and that disturbances on
all the Reynolds stresses behave similarly. In the appendix A, we show that, after the
first few measurement locations, the disturbance profiles are close to being parabolic and
that they remain that way through the rest of the domain (for the first few measurements
the profiles are nearly parabolic but the peaks are not centred). The profiles shown in
figure 8 also indicate that the disturbances are largely similar for each Reynolds stress –
away from the pipe centre. Ultimately, it is the curvature of the disturbance shape that is
important because it dictates the magnitude of f ′ and f ′′, which in turn determine the sign
of the coefficient on X in (3.22) and the oscillatory response condition. Whether the flow
naturally converges to this disturbance profile or if it depends on the perturbation type (e.g.
change in surface roughness, curvature, pipe area, etc.) is an open question.

A weakness of our model is that it is sensitive to the value of the empirical constants;
changing almost any constant by ±20 % will result in a noticeable change in response
behaviour. So, although the model works well here, using more-or-less reasonable
choices for the constants and disturbance inputs, its broader use may be somewhat
limited. Nevertheless, the analysis indicates that the oscillatory, slow-decay response of
wall-bounded turbulent flows subject to perturbation is implicit in the governing equations,
through the terms that describe the turbulence production and pressure strain.

3.3. Flow structure
To complement our analysis of the turbulence response in terms of the Reynolds-averaged
equations, we now examine the response of the structure of turbulence in terms of a scale
decomposition based on energy content. That is, we use proper orthogonal decomposition
(POD) in the radial direction and Fourier decomposition in the azimuthal direction (the
most energetic modes when there is azimuthal symmetry). For the Fourier decomposition,

u(r, θ, t) =
∞∑

m=−∞
ûm(r, t)ei mθ , (3.23)

where m is the Fourier mode number. We can then organize the energy content by mode
number to reveal the activity of structures of similar size.

The contours of the premultiplied streamwise velocity spectra are shown in figure 11.
Here, the vertical axis is the non-dimensional wall-normal location and the horizontal
axis is the azimuthal mode number with logarithmic scaling. As the energy decays
downstream the most energetic structures become smaller and move closer to the wall,
with an overshoot similar to the one seen in the traditional statistics.

The individual mode profiles are in figure 12, where modes m = 1–10 are compared at
all downstream locations, and the corresponding downstream development of the peaks
for each profile are plotted in figure 13. We see that the largest structures (smallest mode
number) are the slowest to respond which is consistent with our expectations (Li et al.
2019). These large structures initially actually increase in energy before decaying, which
may be driven by continuity through the immediate change in mean velocity gradients.
(Alternatively, the modes corresponding to smaller structures may also initially increase
before decaying in energy downstream of the step and our first measurement location is
too far downstream to capture it.) For all modes, the peaks lose energy and gradually

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

70
4

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f W

is
co

ns
in

-M
ad

is
on

 L
ib

ra
ri

es
, o

n 
16

 O
ct

 2
02

0 
at

 1
7:

59
:0

7,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2020.704
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


904 A38-16 T. Van Buren and others

100 101 102
0

0.5

1.0

100 101 102
0

0.5

1.0

y

100 101 102
0

0.5

1.0

100 101 102
0

0.5

1.0

y

100 101 102
0

0.5

1.0

100 101 102
0

0.5

1.0

y

100 101 102
0

0.5

1.0

100 101 102
0

0.5

1.0

y

100 101 102
0

0.5

1.0

100 101 102
0

0.5

1.0

y

m m

–1.0 –0.5 0 0.5 1.0 1.5

log10(m|ûx|2)
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FIGURE 11. Premultiplied streamwise velocity power spectral density for downstream
locations x = 4.4–100 (a–j).

move towards the wall, and at some point further downstream, the modes start to move
back away from the wall while keeping the same energy.

To gain insight about the different radial structures for a given azimuthal mode, we can
further decompose the flow by applying POD to the radial direction, that is,

ûm(r, t) =
∞∑

n=1

cm,n(t)φm,n(r). (3.24)

We expect that the radial mode shape φ is closely tied to physical features in the flow,
as previously demonstrated by Hellström, Sinha & Smits (2011) and Hellström & Smits
(2014).
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FIGURE 12. Streamwise velocity mode profiles for azimuthal modes m = 1–10 (a–j) and
downstream locations x = 4.4–120 (red to blue coloured lines, respectively).
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FIGURE 13. Downstream development of the streamwise velocity mode peak location, relative
to the first measurement location, for azimuthal modes m = 1–6 (black to white shaded symbols).
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FIGURE 14. POD structure profiles for azimuthal modes m = 3, 6, 12, 20, 30 (a–e) and radial
modes n = 1–3 (i–iii), with both the streamwise and radial velocity component (solid and dashed
lines). Downstream locations x = 4.4–120 coloured red to blue.

The radial mode profile shapes for the streamwise and wall-normal components are
shown in figure 14. As they develop downstream (red to blue), the radial structures
generally become more concentrated near the wall, however, the larger structures (e.g.
figure 14a-i) first concentrate near the wall then exhibit a rebound, which may indicate that
the rebounding of the turbulence statistics, seen in figure 8, is due primarily to the larger
flow structures. Figure 15 shows the corresponding normalized POD mode energy for
radial modes n = 1–3. Here we can more clearly see that the energy decays then rebounds
most prominently in the largest structures, again reaffirming that the large structures are
responsible for the second-order response. Remember that the model derived above, which
accurately captures this second-order response, is a model for the outer flow which will
likely be dominated by these larger structures, showing consistency between theory and
experiment.
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FIGURE 15. Scaled azimuthal mode energy distribution for the radial modes n = 1–3 (a–c)
development downstream x = 4.4–120 (red to blue coloured bars).

4. Discussion and conclusions

Starting with fully developed pipe flow, we examined its response as the surface
condition changed abruptly from rough to smooth. The flow over the entire cross-section
of the pipe responds immediately to this step change due to mass conservation, where the
acceleration near the wall must be balanced in an integral sense by the deceleration in the
bulk of the flow. This feature distinguishes interior flows such as pipes and channels from
exterior flows such as boundary layers.

In broad terms, however, the flow response is rather similar to that seen in studies of
boundary layers experiencing comparable step changes. Global quantities like momentum
gradient, pressure gradient, and skin friction recover within 20R downstream of the step,
while the recovery of the turbulence is much slower. Even at the most downstream
station, located 120R downstream (much farther than in previous studies of this kind), the
departure from self-similarity in the stress response was still evident. Also, the relaxation
of the turbulence was not monotonic but exhibited a second-order-like response behaviour,
and for long distances, the bulk of the flow contained lower turbulence kinetic energy
levels than those found in fully developed smooth-wall flow at the same Reynolds number.
Such action has been observed in other flows as well, notably the recovery of a boundary
layer from a short region of surface curvature (Smits et al. 1979) and the response of
channel flow to periodic rough-to-smooth transitions sees a similarly long recovery (Saito
& Pullin 2014). It is also possible that this type of response exists in boundary layers
experiencing a step change in roughness, but the existing data sets do not track the flow
sufficiently far downstream to see the far-downstream behaviour (see, for example, Antonia
& Luxton 1971, 1972).

To help understand this behaviour, we reviewed the governing equations and computed
all the terms available from our measurements. The continuity equation indicated that
the wall-normal gradient of the mean streamwise velocity (∂Ux/∂r) continues to be
the dominant term – as it is in fully developed flows. In turn, the Reynolds averaged
Navier–Stokes equation showed that this gradient is governed principally by wall-normal
gradients of the Reynolds shear stress ((1/r)(∂rux ur/∂r)).

The recovery behaviour was then studied by perturbing the Reynolds-averaged transport
equations for the mean streamwise momentum and Reynolds shear stress. The model
used simple estimates of the pressure strain and dissipation terms and assumed that
the perturbations to Reynolds stress distributions all took the same shape (which the
data showed was a plausible assumption). For the slow-to-respond outer flow, the model
yielded a transport equation in the form of a damped harmonic oscillator. The solution
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matched our measurements reasonably well for x > 10, and successfully captured the
second-order response. Because this model is generalized to consider a perturbation in the
velocity field, it is possible that this type of response exists for other forms of perturbation
(sudden change in area, curvature, etc.). In addition, further exploration of the model may
indicate that this type of response also manifests itself in channels or boundary layers.
(However, there are important differences between the governing equations in Cartesian
and cylindrical coordinate systems, and the model would need to be fully re-assessed
before implementation.)

Through data decomposition, we segregated the most energetic flow structures by size
and found that all structures responded with similar characteristic development. Generally,
the most energetic flow structures were seen to move towards the wall as they moved
downstream, and as their characteristic wall-normal size decreased. Not surprisingly,
the largest structures were the slowest to respond and are likely the primary source
of the overshoot in flow response. Since the slow response is governed by the largest
structures, models (like ours) that consider only the flow away from the wall – where
these large structures dominate – may be a viable approach for describing the recovery
behaviour in other flows that experience a sudden change in surface conditions. In
particular, it appears that turbulent diffusion plays a rather limited role in determining
recovery behaviour, which leads to useful simplifications in the turbulence modelling
framework.
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Appendix A

A.1. Uncertainty analysis
In particle image velocimetry (PIV) measurements, a velocity component ũm at a spatial
location x and time t can be decomposed into the true velocity ũ, a bias error ub, and a
random error ue:

ũm(x, t) = ũ(x, t) + ub(x, t) + ue(x, t). (A 1)

Note that ub here is dependent on both x and t, as the bias error in PIV is usually correlated
with local flow kinematics as a result of the finite interrogation volume. The random error
ue typically stems from the randomness of particle distribution in an interrogation volume,
the electronic noise of an image sensor, etc. We assume ue is a zero-mean random variable
in both space and time.

With (A 1), we can derive different errors encountered in turbulence measurements with
PIV. Averaging (A 1) in time yields

Um = U + ub, (A 2)

wherein the over bar indicates a time average, and U = ũ and Um = ũm are the true and
measured mean velocities, respectively; ub is the time-invariant part of the bias error due
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to, e.g. optical distortion, calibration, non-uniform illumination, etc. This type of bias is
usually insignificant in carefully conducted experiments. What requires more attention is
the bias error in the estimation of Reynolds stresses. Subtracting (A 2) from (A 1) gives an
estimate of the fluctuating velocity

um = u + (ub − ub) + ue, (A 3)

wherein u and um denote the true and measured fluctuating velocities, respectively; (ub −
ub) is the part of bias error that is correlated with local flow kinematics. Given that PIV
low-pass filters turbulent fields and thus tends to underestimate fluctuations, it is safe to
conjecture (ub − ub) = −αu with 0 < α < 1, that is, (ub − ub) is negatively correlated
with u. Equation (A 3) then becomes

um = (1 − α)u + ue, (A 4)

from which we can derive the turbulence intensity

u2
m = A11u2 + u2

e, (A 5)

and the Reynolds shear stress
uvm = A12uv. (A 6)

Here, A1, A12 ∈ (0, 1) are factors characterizing unresolved turbulent motions. The
derivations of (A 5) and (A 6) use the assumption that ue and ve are uncorrelated and they
are uncorrelated with u and v. Now it becomes evident that PIV underestimates Reynolds
stresses at an insufficient spatial resolution. Also, the random error ue contributes a
positive bias in the estimation of turbulence intensity but not the Reynolds shear stress
since ueve = 0.

Spatial attenuation is a well-known and long-standing limitation of PIV in turbulence
studies (Kähler, Scharnowski & Cierpka 2012; Scharnowski, Hain & Kähler 2012). The
unresolved turbulent energy is difficult to be quantified without fully resolved data. Some
correction schemes have gained success in correcting turbulence statistics in canonical
flows (Segalini et al. 2014; Lee, Monty & Hutchins 2016), but no universal methods exist
for strongly disturbed, non-equilibrium flows.

While correction of attenuated Reynolds stresses is beyond the scope of this work, it
is possible and necessary to examine the effect of u2

e on the convergence of turbulence
statistics. To evaluate u2

e , we adopt the method described in Adrian & Westerweel (2011,
§ 9.4.5) that makes use of the assumption that ue from different spatial locations are
uncorrelated. Use (A 4) to express the two-point correlation function

R11(�r)m = um(x)um(x + �r) = A�ru(x)u(x + �r) + ue(x)ue(x + �r), (A 7)

with A�r ∈ (0, 1). Given that ue(x)ue(x + �r) = 0 when �r /= 0, an estimate of u2 free
of random error is obtained

u2 ≈ lim
�r→0

R11(�r)m = u2
m − u2

e . (A 8)

Equation (A 8) suggests that the difference between the directly measured turbulence
intensity, u2

m, and the extrapolation of R11(�r)m at �r = 0 is an estimate of u2
e .

Practically, the extrapolation can be reliably calculated using the relation R11(�r) ≈
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FIGURE 16. (a) Two-point correlation function R11 (black circles) calculated from PIV data in a
fully developed turbulent pipe flow. R11 is plotted against (�r/DI)

2, where �r is the streamwise
separation and DI is the interrogation spot size. The red dashed line is a linear fit to R11 =
R11(0) − R

′′
11(0)�r2/2 using the second and third data points from the left. The red circle on the

vertical axis indicates R11(0) projected from the fit. The discrepancy between the two estimates
of R11(0) = u2 is a measure of the variance of random error, u2

e . (b) The ratio of u2
e to the local

turbulence intensity.

R11(0) − �r2R′′
11(0)/2 for small �r when the separation �r is along a homogeneous

direction.
PIV data in a fully developed turbulent pipe flow at Reτ = 3760 are used to examine

u2
e . The data were taken in a streamwise–radial plane, and velocity vectors were computed

with an interrogation spot size of 120 viscous units and 50 % window overlap. It is worth
noting that this fully developed data set was acquired in the same pipe facility with the
same camera and laser at a similar spatial resolution as the stereoscopic PIV data presented
in the main body of this paper. Therefore, the u2

e result presented in this appendix is
representative of the uncertainty level of the stereoscopic PIV data.

Figure 16(a) shows R11 as a function of (�r/DI)
2 at y/R ≈ 0.15, with �r in the

streamwise direction. The red dashed line illustrates the extrapolation to �r = 0, from

which
√

u2
e is estimated to be 0.06 m s−1, corresponding to a displacement random

error of 0.12 pixel in the image space. The displacement random error is found to
decrease with y/R from approximately 0.15 pixel to 0.05 pixel. The ratio of u2

e to the
local turbulence intensity is between 2 % and 4 % over 0 < y/R < 1, which is plotted
in figure 16(b).

In view of u2
e � u2, the convergence of turbulence statistics is dictated by turbulent

fluctuations but not the random error. The standard deviations of the estimates of U, u2

and uv are given by

σ [Um] = u2
1/2
m√
NF

, (A 9)

σ
[
u2

m

]
=

√
2 u2

m√
NF

, (A 10)
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and

σ [uvm] = (u2
mv2

m + uv2
m)1/2

√
NF

, (A 11)

wherein NF is the total number of independent frame pairs. In the PIV data presented in
the main body,

√
NF ≈ 100, and u2

x

1/2
is as high as approximately 20 % of U. Therefore,

according to (A 9), the standard deviation of U is around 0.2 % of U, significantly lower
than the changes between different x locations (figures 3 and 10). Likewise, (A 10) implies
that the fluctuation in the estimate of turbulent kinetic energy is around 1.4 %, noticeably
smaller than the differences seen in figures 2 and 8 even at the last few x locations.
Regarding the fluctuation in ux ur, if we approximate u2

x : u2
r : ux ur ≈ 12 : 4 : 3 based on

the results in figure 8, then σ [ux ur]/ux ur ≈ 2.5 %, also a small number as compared to the
downstream evolution of ux ur.

A.2. Transport equations
The terms in the Rxx , Rrr and Rθθ transport equation (3.3). First, the material derivative

DRxx

Dt
= Ux

∂ u2
x

∂x
+ Ur

∂ u2
x

∂r
,

DRrr

Dt
= Ux

∂ u2
r

∂x
+ Ur

∂ u2
r

∂r
,

DRθθ

Dt
= Ux

∂ u2
θ

∂x
+ Ur

∂ u2
θ

∂r
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 12)

The production,

Pxx = −2 u2
x

∂Ux

∂x
− 2 urux

∂Ux

∂r
,

Prr = −2 u2
r
∂Ur

∂r
− 2 urux

∂Ur

∂x
,

Pθθ = −2
r

u2
θUr.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(A 13)

The turbulent diffusion,

TDxx = −1
r

∂

∂r
(ruru2

x) − ∂

∂x
(u3

x),

TDrr = −1
r

∂

∂r
(ru3

r ) + 2
r
(uru2

θ ) − ∂

∂x
(u2

r ux),

TDθθ = −1
r

∂

∂r
(ruru2

θ ) − 2
r
(uru2

θ ) − ∂

∂x
(u2

θux).

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(A 14)
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The pressure diffusion,

PDxx = −2
∂ux p
∂x

,

PDrr = −2
r

(
∂rurp
∂r

− urp
)

,

PDθθ = −2
r

(
∂uθp
∂θ

+ urp
)

.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(A 15)

The pressure strain,

PSxx = 2p
∂ux

∂x
,

PSrr = 2p
∂ur

∂r
,

PSθθ = 2
r

p
(

∂uθ

∂θ
+ ur

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 16)

The viscous diffusion,

VDxx = 1
r

∂

∂r

(
r
∂u2

x

∂r

)
+ ∂2u2

x

∂x2
,

VDrr = 1
r

∂

∂r

(
r
∂u2

r

∂r

)
+ 2

r2
(u2

θ − u2
r ) + ∂2u2

r

∂x2
,

VDθθ = 1
r

∂

∂r

(
r
∂u2

θ

∂r

)
− 2

r2
(u2

θ − u2
r ) + ∂2u2

θ

∂x2
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 17)

Lastly, the viscous dissipation,

Dxx = −
(

∂ux

∂x

)2

−
(

∂ux

∂r

)2

−
(

1
r

∂ux

∂θ

)2

,

Drr = −
(

∂ur

∂x

)2

−
(

∂ur

∂r

)2

−
(

1
r

∂ur

∂θ
− uθ

r

)2

,

Dθθ = −
(

∂uθ

∂x

)2

−
(

∂uθ

∂r

)2

−
(

1
r

∂uθ

∂θ
+ ur

r

)2

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 18)

A.3. Disturbance profile
We check our assumption that a disturbance on τ takes the approximate parabola with
preserved shape downstream. Figure 17 shows the disturbance profiles of the measured uv
data as they develop (here, to obtain the disturbance profile we have subtracted the final
measurement location as an estimate of the unperturbed case). A representative parabola
is also plotted for comparison.
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2.0
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1.0f
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0.8 1.00

FIGURE 17. Disturbance shape as it varies downstream (symbols as in figure 8) compared to a
parabola (red dashed line).
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