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The propulsive performance of an unsteady heaving and pitching foil is considered, and an extensive experimental

parameter space ofmotion amplitudes, frequencies, and phase offsets between the heave and pitchmotions is studied.

Thephase offset proves to be a critical parameter in determining the foil propulsive performance. Tomaximize thrust,

the pitchmotion needs to lag the heavemotion by about 30 deg; but, tomaximize efficiency, the lag needs to increase to

about 90 deg, corresponding to a slicing motion where the angle of attack is minimized. Scaling relations are also

presented, and they are developed from lift-based and added mass forces, which describe the experimental data

closely. Using the scaling relations as a guide, increases in performance are found when foil amplitudes (specifically

pitch) increase while maintaining a modest angle of attack.

Nomenclature

a = trailing-edge position
a�h = h0∕c
a�θ = θ0
a� = a∕c
CL = lift coefficient; CL

CP = power coefficient; P∕�1∕2�ρU3
∞sc

CT = thrust coefficient; Fx∕�1∕2�ρU2
∞sc

c = foil chord
FD = drag offset
Fx;y = streamwise x and lateral y force
f = frequency of motion
f� = reduced frequency; fc∕U∞
h = heave position (leading edge)
L = lift force
Mz = spanwise moment
mw = mass of displaced fluid in the wake
P = foil input power; Fy

_h�Mz
_θ

Re = chord-based Reynolds number; cU∞∕ν
St = Strouhal number; 2fa0∕U∞
Sth = Strouhal number based on heave, where the Strouhal

number is equal to 2fh0∕U∞
Stθ = Strouhal number based on pitch, where the Strouhal

number is equal to 2fcθ0∕U∞
s = foil span
t = time
Ueff = effective velocity incoming to foil;

�������������������
U2

∞ � _h2
q

U∞ = freestream velocity
U� = nondimensional effective velocity; Ueff∕U∞
uw = characteristic wake velocity
α = angle of attack
η = propulsive efficiency; CT∕CP

θ = pitch angle
ν = kinematic viscosity
ρ = fluid density
ϕ = phase angle between heave and pitch motions
ψ = phase angle between heave and angle-of-attack motions

Subscript

0 = amplitude of time-varying signal

Superscripts

⋅ = first time derivative
� = second time derivative
— = time average

I. Introduction

OVER the past 20 or 30 years, there has been considerable
interest in finding new methods of propulsion for underwater

vehicles that are inspired by biology [1–3]. Many fish swim by using
propulsionmethodswhere the principal thrust comes fromoscillating
a propulsive surface, such as a fluke or caudal fin, in a combined
heave and pitch motion [4]. In many cases, a reasonably clear
distinction can be made between the body as the main source of drag
and the propulsor as the main source of thrust; if the body/fin
interaction can be neglected, the propulsor performance may be
studied separately. Here, we focus our attention on the thrust and
efficiency of a foil moving in heave and pitch as a simplifiedmodel of
an isolated propulsor for possible application to a new generation of
underwater vehicles.
The performance of submerged foils in combined heaving and

pitching motion has already been studied relatively extensively
[1,2,5–7]. In a particularly influential work, Anderson et al. [8]
obtained efficiencies as high as 87% using a heaving and pitching
two-dimensional NACA 0012 airfoil in sinusoidal motion. They
connected the wake structure to the performance of the foil, arguing
that, for maximum efficiency, the leading-edge vortex pair needed to
interact beneficially with the trailing-edge vorticity. In related work,
Read et al. [9] recognized the importance of the peak angle of attack
when considering performance, although they reported lower values
of efficiency (55–70%) than the 87% reported by Anderson et al. [8]
in the same laboratory under similar experimental conditions. The
phase angle between the heave and pitch motions was also examined
briefly, although the authors, somewhat surprisingly, did not find it to
be very influential. Experiments on large-amplitude motions by
Scherer [10] showed similar peak efficiency values to those found by
Read et al. [9] over a wide range of parameters.
In terms of optimization, Kaya and Tuncer [11] numerically

studied heaving and pitching airfoil performance in laminar air flow,
and they used gradient-based optimization of the motion paths to
show that there were significant benefits to thrust by moving
nonsinusoidally. They found that motions that maintained a constant
angle of attack for longer periods of time, which was a topic also
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considered by Read et al. [9], produced higher thrust than purely
sinusoidal motions.
The theory of heaving and pitching plates and foils has a long

history. Theodorsen [12] first derived the linearized expressions for
the forces generated by an oscillating foil in 1935 in the context of
aerodynamic flutter. His analysis included the contributions due to
aerodynamic (circulation-based) forces and added mass forces.
Garrick [13] used Theodorsen’s [12] results to develop expressions
for thrust and power for a two-dimensional rigid propulsor, and
Lighthill [5] used Garrick’s [13] results to estimate the forces
produced by the lunate tail of a fish in the context of his elongated-
body theory, which he later extended to large-amplitudemotions [14]
(although only addedmass forces were considered in the latter work).
Chopra [15] and Chopra and Kambe [16] extended Lighthill’s [14]
work to three dimensions by incorporating the lifting-line theory, and
Wu [17] considered the performance of a flexible foil with a
prescribed deformation. Then, Katz and Weihs [18] were the first to
consider the addition of chordwise flexibility on a two-dimensional
foil where the structural mechanics were coupled to the fluid
mechanics.
What appears to be missing in the literature is a generic scaling

analysis for heaving and pitching foils that embodies the possibly
nonlinear underlying physical mechanisms that generate thrust
and determine efficiency. In this respect, Floryan et al. [19]
combined unsteady lift [12] and added mass forces [20] to
construct scaling relations that described the mean forces
generated by heaving or pitching foils. They showed that the
mean thrust generated by heaving motions was entirely lift based,
whereas the mean thrust generated by pitching motions was from
added mass alone. In contrast, for heave and pitch, the mean
input power (and thus efficiency) depended on both lift-based and
added mass forces. These scaling relations have since been
extended to intermittent motions by accounting for the duty cycle
of the motion [21], as well as to nonsinusoidal motions by adding
a parameter based on the peak trailing-edge velocity of the
foil [22].
Here, we extend the approach of Floryan et al. [19] to derive

scaling relationships for foils that are simultaneously heaving and
pitching. We verify the relationships against experiments covering a
large range of heave and pitch amplitudes, frequencies, and phase
differences. This approach allows us to pinpoint physical
mechanisms that influence thrust and efficiency, which can then be
used as a guide to improve performance.

II. Experimental Methods

Experiments on a simultaneously heaving and pitching foil were
conducted in a free-surface recirculating water tunnel with a 0.46 ×
0.3 × 2.44 m test section and baffles to minimize surface waves. The
tunnel velocity was fixed at a constant value of U∞ � 0.1 m∕s. The
experimental setup is illustrated in Fig. 1.

A teardrop foil was used with a chord c � 80 mm, a maximum
thickness of 8 mm, and a span s � 279 mm, yielding a chord-
based Reynolds number of Re � 8000. Heave motions were
generated by a linear actuator (Linmot PS01-23 × 80F-HP-R)
pushing the foil carriage on near-frictionless air bearings
(NewWay S301901), and pitch motions about the leading edge
were generated by a servo motor (Hitec HS-8370TH). Both
motions were simultaneously measured via encoders. The foil
was actuated sinusoidally according to

h � h0 sin�2πft�; θ � θ0 sin�2πft� ϕ� (1)

at frequencies f � 0.2 to 0.8 Hz every 0.1 Hz, with heave
amplitudes of h0 � 10, 20, and 30 mm; pitch amplitudes θ0 � 5,
10, and 15 deg; and phase differences ϕ � 0 to 330 deg in
intervals of 30 deg, with a more refined spacing of 10 deg
between 210 and 330 deg (see Table 1 and Fig. 2). Altogether, the
parameter space comprised 1260 unique cases.
The forces and moments of the foil were measured using a six-

component sensor (ATI Mini40), with force and torque
resolutions of 5 × 10−3 N and 1.25 × 10−4 N ⋅m, respectively,
in the x and y directions and 10−2 N and 1.25 × 10−4 N ⋅m in the
z direction, sampled at 100 Hz. Each case ran for 30 cycles of the
motion, with the first and last five cycles used for warmup and
cooldown. Before every case, we zeroed the force sensor to
minimize any voltage drift. Due to the sufficient repeatability
shown by similar experiments in the past [19,21,22], only one
trial of each case was performed.

III. Results and Discussion

The results on propulsive performance are presented in terms of the
nondimensional thrust coefficient, input power coefficient, and
Froude efficiency defined by

CT � Fx

�1∕2�ρU2
∞sc

; CP � Fy
_h�Mz

_θ

�1∕2�ρU3
∞sc

; η � CT

CP

(2)

Fig. 1 Experimental setup and motion definition.

Table 1 Experimental parameter space

Parameter Range

Freestream velocity U∞ � 0.1 m∕s
Chord c � 80 mm
Span s � 279 mm
Frequency f � 0.2; 0.3; : : : ; 0.8 Hz
Heave amplitude h0 � 10; 20; 30 mm
Pitch amplitude θ0 � 5; 10; 15 deg
Phase offset ϕ � 0; 30; : : : ; 210; 220; : : : ; 330 deg

Fig. 2 Diagram depicting the parameter space on a frequency-
phase plot.
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We denote the time-averaged values of these parameters by �CT

and �CP, respectively, whereas efficiency is always reported as a
time-averaged quantity. The foil kinematics are characterized by
the Strouhal number St � 2fa0∕U∞, where a0 is the peak
amplitude of the trailing-edge motion, and by the reduced
frequency f� � fc∕U∞.
To illustrate the effects of combining heave and pitch motions,

Fig. 3 displays the time-averaged thrust coefficient and efficiency of a
pitching foil with incremental increases in heave amplitude, at a
phase offset of ϕ � 270 deg, while keeping the pitch amplitude
fixed at θ0 � 15 deg. The results shown in Figs. 3a and 3b are from
an additional dataset not shown in Table 1 where U∞ � 60 mm∕s,
f � 0.2; 0.3; : : : ; 1.5 Hz, and h0 � 0; 2; : : : ; 20 mm. In this case,
adding heave to the pitching motion increases thrust and efficiency
significantly. Note also that the efficiency curves exhibit a maximum
value, indicating that there is an optimum efficiency point. For low
values of f�, the efficiency decreases sharply as the effects of the
viscous drag on the propulsor become important. For high values of
f�, the efficiency approaches its inviscid or ideal value, which slowly
decreases with increasing reduced frequency. The beneficial effects
of combining pitching and heaving motions were first discussed by
von Kármán and Burgers [23] and more recently recapitulated by
Wu [3].

A. Maximizing Performance Through Combined Motion

When combining sinusoidal heaving and pitching motions, the
phase offset becomes a critical parameter. Figure 4 illustrates the
motion of a swimming foil for phase differences of ϕ � 0, 90, 180,
and 270 deg. When heave and pitch are in phase, the motion appears
to an observermovingwith the foil as if the foil is pitching about some

point upstream of the leading edge. For phase angles around
ϕ � 90 deg, the trailing edge leads the leading edge. When
ϕ � 180 deg, the foil appears to pitch about a point behind the
leading edge. However, ϕ � 270 deg seems to be the most
“fishlike,” cleanly slicing through thewater with the lowest angles of
attack (represented by the angle between the foil and its instantaneous
direction of motion).
To appreciate the importance of pitch angle in producing thrust, we

first consider how thrust is generated by heave-only motions, as
shown in Fig. 5a. Thrust production in heave is lift based, meaning
that the lateral velocity of the foil _h combines with the freestream
velocity U∞ into an effective foil velocity Ueff that produces lift L.
Because the lift vector is perpendicular to the effective velocity
vector, L has components in the lateral and streamwise directions
(Fy andFx, respectively), with the latter being the thrust. To produce
thrust efficiently, we need to avoid dynamic stall; thus, we need to
limit the maximum angle of attack α. To produce higher thrust,
however, we need to increase the heave velocity, which will then
increase the angle of attack.
This conflict can be mitigated by adding pitch to the heave motion

such that the angle of attack is reduced. Consider a heaving foil with
fishlike pitching motion added (ϕ � 270 deg), as shown in Fig. 5b.
Compared to heave-only motions (Fig. 5a), the heave velocity is
greater but the angle of attack is the same due to the addition of
appropriate pitch. The increased heave velocity increases the lift and
rotates more of it in the thrust direction, increasing the efficiency.
Thus, the phase difference between the heave and pitch motions is a
crucial factor in determining the foil performance.
Figure 6 shows the time-averaged output performance (thrust,

power, and efficiency) for all the phases and frequencies tested at
heave and pitch amplitudes of h0∕c � 0.375 and θ0 � 15 deg,
respectively. In each subfigure, the phase difference ϕ varies in the
azimuthal direction, whereas the reduced frequency f� varies in
the radial direction. Note that these trends are representative of all of
the combinations of heave and pitch amplitudes tested in this study,
and that the full results are presented in Appendix A.
The Strouhal number St and trailing-edge amplitude a�0 are largest

for ϕ � 0 deg because in-phase heave and pitch motions will result
in the greatest peak-to-peak excursion of the trailing edge. The peak
angle of attack α0, however, aligns with ϕ � 90 deg. Interestingly,
the thrust does not follow the behavior of the Strouhal number, which
would be expected if the Strouhal number was the sole governing
parameter for these flows, as suggested in [24]. The peak thrust
actually occurs around ϕ ≈ 330 deg, where the trailing edge of the
foil lags the leading edge by 30 deg. Conversely, the peak power is
tilted toward ϕ ≈ 30 deg. The peak efficiency occurs around
ϕ � 270 deg, which is coincident with the smallest peak angles of
attack. This observation agrees with other researchers who have
argued that the peak angle of attack is an important performance
parameter [8,11], with the former study specifically using

a) b)
Fig. 3 Time-averaged a) thrust coefficient and b) efficiency of a pitching foil with incremental increases in heave amplitude.

a)

b)

c)

d)
Fig. 4 Motion of a foil swimming from left to right via heave and
pitch motions with a phase offset: a) ϕ � 0 deg, b) 90 deg, c) 180 deg,
and d) 270 deg.
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ϕ � 270 deg to achieve the highest efficiencies.Wewill explore this
further in Sec. III.B.
The impact of phase offset can be seen more clearly in Fig. 7,

which shows the same data displayed in Fig. 6 but for a fixed reduced
frequency of f� � 0.64. The peak thrust and minimum power occur
when ϕ � 330 and 210 deg, respectively, and the peak efficiency is
almost exactly in between at ϕ � 270 deg. Note that we do not see
positive thrust for 90 deg < ϕ < 180 deg, even at the highest
frequency and largestmotion amplitudes, indicating that this range of
phase offsets is of no value propulsively.
To better understand the input power behavior shown in Fig. 7, we

split the power into its lateral force Fy
_h and moment Mz

_θ
components. Figure 8 shows the relative contributions of the lateral
force and moment to the power over one actuation cycle for phase
offsets of ϕ � 0 and 270 deg. The contributions of the lateral force
are similar for both cases, but the moment components differ
markedly. When the heave and pitch motions are in phase

a) b)
Fig. 5 Heaving foil a)without andb)with addedpitchmotion. Streamwise, heave, and effective velocities are shown in red; and resulting lift-based forces

are shown in blue.

Fig. 7 Time-averaged power coefficients (force component, moment
component, and total), thrust coefficient, and efficiency as they vary with

phase between heave and pitch motions. The heave amplitude-to-chord
ratio is h0∕c � 0.375, pitch amplitude is θ0 � 15 deg, and reduced
frequency is f� � 0.64.

Fig. 6 Impact of phase offset (ϕ, shown in the azimuthal variation) and reduced frequency (f�, shown in the radial direction) on a) Strouhal number;
b) amplitude-to-chord ratio; c) peak angle of attack; d) time-averaged thrust coefficient; e) time-averaged power coefficient; and f) efficiency. Heave
amplitude-to-chord ratio ish0∕c � 0.375, andpitchamplitude isθ0 � 15 deg. Reduced frequency increases radially outward,with linesmarking levels at
f� � 0.16; 0.24; : : : ; 0.64.
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(ϕ � 0 deg), their accelerations are in phase. Thus, when the foil
starts to accelerate laterally, it also accelerates rotationally in the
same direction, working against the resistance of the fluid and
yielding a high moment component in the power. However, when
heave and pitch are offset by ϕ � 270 deg, the lateral acceleration
of the foil produces a force that assists the force associated with
pitch rotation, thus lowering the moment required. This interaction
between the lateral force and moment components of the input
power is critical to achieving the high efficiency we see
at ϕ � 270 deg.
In summary, we find that the most efficient motions are when

ϕ � 270 deg, where the trailing edge lags the leading edge in a
slicing motion. In contrast, the highest thrust motions occur when
the heaving and pitching motions are nearly in phase, although
this comes with a significant loss in efficiency. Note that our
experimental results differ from those predicted using linear theory
[13], which indicates that thrust is maximized when heave and
pitch are in phase, and efficiency is maximized for phases around
225 deg. The discrepancy between our experiments and the linear
theory motivates us to develop scaling laws that can explain our
observations.

B. Scaling Laws

Here, we develop a scaling analysis by considering the forces
acting on the foil due to addedmass and lift-based sources.We do not
include the forces from the inertia of the foil, as was done in [10],
because their time-averaged contributions were zero for these types
of heaving and pitching flows, as shown in [25]. We base our scaling
analysis on the work by Floryan et al. [19], who considered heaving
and pitching motions independently.
We only consider pitching motions about the leading edge,

although, as Lighthill [5] pointed out, changing the pitch axis is
equivalent to changing the phase angle between the heaving and
pitching motions (for small motions). We will use the ∼ symbol to
indicate that one quantity scales as another (for example, F � ma
for constant mass isF ∼ a), andwe use the≈ symbol to indicate one
quantity is approximately equal to another (for example, 1.013 ≈ 1).
In our initial analysis, we will adopt a loose notation where we
intentionally ignore all multiplicative constants (such as π), but our
final expressions for thrust and power will contain multiplicative
constants that will need to be determined empirically. Throughout
the analysis, we make a small angle approximation on the
pitch angle.
First, we consider the lift-based (circulatory) forces as in the work

of Theodorsen [12]. The lift force scales as∼ρscU2
effCL where the lift

coefficient CL ∼ α� _αc∕Ueff . Projecting the lift force into the

streamwise and lateral directions (multiplying by _h∕Ueff and

U∞∕Ueff , respectively) gives

Fx;L ∼ ρsc�α _hUeff|�{z�}
1

� c _α _h|{z}
2

�;

Fy;L ∼ ρsc�αU∞Ueff|���{z���}
1

� c _αU∞|{z}
2

�

where groups 1 and 2 are the steady and unsteady portions of the lift,

respectively. The resulting moment about the leading edge is

Mz;L ∼ ρsc2Ueff�αUeff � c _α�

The angle of attack is exactly α � −θ − arctan� _h∕U∞�; however,
for heave velocities on the order of the freestream velocity or less, we

approximate this as α ≈ −θ − _h∕U∞. At this point, we choose to

leave lift force terms as functions of α and not fθ; hg to more directly

keep track of lift-based phenomena.
Next, we consider the streamwise and lateral components of the

added mass forces, following the analysis of Sedov [20] and its

interpretation in [19]. This yields

Fx;AM ∼ ρsc2�c�θθ� �hθ|����{z����}
1

� _h _θ�1� θ2� � _θθU∞|���������������{z���������������}
2

� c_θ2|{z}
3

�;

Fy;AM ∼ ρsc2�c�θ� �h|�{z�}
1

� _h _θ θ� _θ�1� θ2�U∞|����������������{z����������������}
2

� c_θ2θ|{z}
3

�

where group 1 terms are forces arising from the foil accelerations,

group 2 terms are Coriolis forces, and group 3 terms are centrifugal

forces. The moment about the leading edge due to added mass is

Mz;AM ∼ ρsc2�c2 �θ� c �h� _h�1� θ2�U∞ � θU2
∞ � _h2θ�

Note that 1� θ2 is on the order ofO�1� θ20�, so wewill make the

approximation that 1� θ2 ≈ 1.
Combining the contributions from added mass and lift yields the

following expression for total thrust:

Fx∼ρsc�α _hUeff�c _α _h�c2 �θθ�c �hθ�c _h _θ�c_θθU∞�c2 _θ2�−FD

(3)

where FD is the fluid drag force on the foil. Similarly, combining

the contributions from added mass and lift for the power

P (� Fy
_h�Mz

_θ) yields

P∼ρsc�α _hUeffU∞�c_α _hU∞�cα_θU2
eff�c2 _α _θUeff�c2 _h �θ�c �h _h

�c _h2 _θθ�c _h _θU∞�c2 _h_θ2θ�c3 _θ �θ�c2 �h _θ�cθ _θU2
∞� (4)

In Eqs. (3) and (4), we underline terms that are inherently out of

phase for a linear system with sinusoidal motions; hence, we would

expect them to be small. However, Liu et al. [26] showed that there

may be important nonlinearities in these types of flows, and therefore

Floryan et al. [19] included these out-of-phase terms in their analysis;

thus, we also retain them here.
Next, we impose sinusoidal motions for heaving and pitching,

where pitch has a phase offsetϕ from the heavemotion, which results

in a sinusoidal variation of angle of attack with phase ψ :

h � h0 sin�2πft�; θ � θ0 sin�2πft� ϕ�;
α � α0 sin�2πft� ψ�

a)

b)
Fig. 8 Phase-averaged cycles of a) heave-to-chord ratio andb) forceFy

_h
andmomentMz

_θ components of power forϕ � 0 deg (red) and 270 deg
(blue).
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where

α0 �
�����������������������������������������������������������������������������
θ20 � 4πθ0 sinϕ

�
fh0
U∞

�
� 4π2

�
fh0
U∞

�
2

s
(5)

and

ψ � arctan

�
α0 sinψ

α0 cosψ

�
� arctan

�
−θ0 sinϕ − 2π�fh0∕U∞�

−θ0 cosϕ

�
(6)

To obtain time-averaged quantities, we apply these motion

functions to Eqs. (3) and (4) and integrate with respect to time over

one motion cycle. The resulting time-averaged expressions for thrust

and power are

Fx

ρsc
∼ fα0h0 sinψUeff � cf2α0h0 cosψ � c2f2θ20 � cf2h0θ0 cosϕ

� cfθ20U∞ −
FD

ρsc
(7)

�P

ρsc
∼ fα0h0 sinψUeffU∞ � cfα0θ0 sin�ψ − ϕ�Ueff

2

� cf2α0h0 cosψU∞ � cf2α0θ0 cos�ψ − ϕ�Ueff

� c2f3h0θ0 sinϕ� cf3h20 � cf2h0θ0 cosϕU∞

� c3f3θ20 � cfθ20U
2
∞ � c2f3h0θ

3
0 sinϕ� cf3h20θ

2
0 sinϕ cosϕ

(8)

Wewill neglect the last two terms in the power because they are of

higher order and their influencewill be small. The quantityUeff is the

time average of the effective velocity of the foilUeff . It is given by the

complete elliptic integral of the second kind E�⋅�:

Ueff �
2U∞

π
E

�
−
�
2πfh0
U∞

�
2
�

For our range of data, Ueff may be approximated by

Ueff ≈U∞

���������������������������������
1� 2π2

�
fh0
U∞

�
2

s

Nondimensionalizing yields the following thrust and power

coefficients:

CT ∼ α0SthU
� sinψ|���������{z���������}

1

� α0f
�Sth cosψ|��������{z��������}

2

� St2θ|{z}
3

� SthStθ cosϕ|�������{z�������}
4

� Stθa
�
θ|{z}

5

− a�θ|{z}
6

(9)

CP ∼ α0SthU
� sinψ � α0StθU

�2 sin�ψ − ϕ� � α0f
�Sth cosψ

� α0f
�StθU� cos�ψ − ϕ� � f�SthStθ sinϕ� f�St2h

� SthStθ cosϕ� f�St2θ � Stθa
�
θ (10)

where Sth � 2fh0∕U∞ and Stθ � 2fcθ0∕U∞ are the Strouhal

numbers of the heave and pitchmotions individually,f� � fc∕U∞ is

the reduced frequency, a�h � h0∕c and a�θ � θ0 are the amplitude to

chord ratios, andU� � Ueff∕U∞. We expressed the drag term CD as

a linear function of pitch amplitude θ0: that is, a linear function of the
projected frontal area for slow motions (f → 0). As shown in

Appendix B, this is a fair approximation for our data.

For thrust [Eq. (9)], terms 1 and 2 represent the contributions due
to steady and unsteady aerodynamic lift, respectively; term 3 is
partly due to foil acceleration and partly due to centrifugal force;
term 4 is partly foil acceleration and partly Coriolis force; term 5 is
the Coriolis force; and term 6 is the viscous drag. In the special
cases of pure heave (θ0 � 0) and pure pitch (h0 � 0), our
expressions for thrust and power reduce to those given by Floryan
et al. [19].
We now make some simplifications. First, we recognize

that α0 cosψ � −θ0 cosϕ and α0 sinψ � −θ0 sinϕ − 2πfh0∕U∞.
Second, wherever it is possible, we combine terms into the total
motion Strouhal number St � 2fa0∕U∞ where a � h� cθ, thus
St2 � St2h � St2θ � 2SthStθ cosϕ. Third, we assume that U� ≈ 1.
Although this particular approximation may seem aggressive,
changes in U� are relatively small when compared to other input
parameters like Strouhal numberSt,f�, ora�; and our results indicate
that inclusion of U� has a minor impact on the scaling. The final
expressions for the thrust and power coefficients are as follows:

CT � c1St
2 � c2Stha

�
θ sinϕ� c3Stθa

�
θ − c4a

�
θ (11)

CP � c5St
2 � c6f

�SthStθ sinϕ� c7Stha
�
θ sinϕ� c8f

�St2h

� c9f
�St2θ � c10Stθa

�
θ (12)

wherewe have now introduced coefficients cn to each term to account
for themultiplicative constants that have been ignored in our analysis
so far. These coefficients are determined via linear regression over the
entire experimental dataset. Note that the value of the coefficients
may depend on the airfoil shape, and they can be more specifically
tuned for a fixed phase angle ϕ (we find that coefficients found by
linear regression for a singleϕ are similar to the coefficients found by
linear regression of the entire dataset). As before, the underlined
terms are due to terms that are out of phase in a systemwith sinusoidal
motions and would be neglected in a linearized analysis.
The experimental data for all motion amplitudes and phases,

plotted as a function of these scaling relations, are shown in
Fig. 9, thrust constants: c1 � 4.84, c2 � −5.96, c3 � −2.82, and
c4 � 0.48. Power constants: c5 � 25.1, c6 � 32.1, c7 � 4.95,
c8 � 41.35, c9 � 14.98, and c10 � −25.77. For both thrust and
power, we see a collapse of the data, indicating that our
simplified model closely describes the propulsive performance
for these types of foil motions. We see the expected linear
relationship between the model thrust and the data, but the power
shows a slight nonlinear behavior (also seen in [19]). To make
the power scaling linear, we need to add a higher-order term (one
in St3), but that is beyond the level of the current analysis.
In Eqs. (11) and (12), the phase differences that cause out-of-

phase terms (underlined in the equation) to be important may be
due to the influence of the wake on the foil. Scherer [10]
explained that the induced velocity of the wake on the foil
changed the instantaneous angle of attack, and therefore the lift
force; and it changed the inertial forces from added mass, which
was equivalent to a time lag on the circulatory forces in the
linearized theory (for a nonlinear system, this equivalency cannot

be made [26]). We find the heave-based term in the power f�St2h,
which originates from the �h _h term in Eq. (4), to make an
important contribution to the power. However, we also find that
the pitch-based terms in the thrust and power (associated with
constants c3, c9, and c10) can be neglected without much penalty

on the data collapse. Such terms are all of the order O�θ20�, so this

result is not surprising.
Figure 10 shows the performance maps of efficiency versus

mean thrust with contours of pitch angle, peak angle of attack,
and reduced frequency for multiple heave amplitudes, calculated
from Eqs. (11) and (12). When creating these performance maps,
we neglected the drag term in the thrust in order to calculate
“ideal” efficiencies; that is, we removed the effect where
efficiency rapidly decays at low reduced frequency (see Fig. 3
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and the accompanying discussion). The maps extend a good deal
beyond our experimental dataset; although we cannot validate
these extrapolated regions (especially where our approximations

break down), they may be useful in identifying trends and
regions that should be explored further. The regions of Figs. 10a
and 10b in the upper right corner are white because our

simulations did not extend that far in θ, and the bottom portions
of all subfigures are white because this was the performance for
the heave-only motion; thus, data cannot exist below it.

Propulsors that produce high thrust and do so efficiently appear

in the top-right corner of the performance maps, so this is where
propulsors should operate. There are two standout trends: for

fixed motion amplitudes, decreasing the peak angle of attack

increases efficiency (similar behavior seen in [11]); and for fixed

frequency and heave amplitude, increasing the pitch amplitude

increases both efficiency and thrust. In other words, bigger,
slower motions improve efficiency as compared to smaller, faster

motions.
The discussion by Alexander [27] illuminated why this is so. For

unsteady propulsion, the thrust is equal to the rate at which

a) b)

c) d)
Fig. 10 Performancemaps of efficiency and time-averaged thrust coefficient for a heaving and pitching foil with phase offset ofϕ � 270 deg. Contours
of the pitch amplitude (black solid lines) and peak angle of attack (red dashed lines) are superimposed on a color contour of reduced frequency. The heave
amplitude-to-chord ratios are a) h0∕c � 0.125, b) 0.25, c) 0.375, and d) 0.5. They are calculated from Eqs. (11) and (12), with constants from Fig. 9.

Fig. 9 Scaling of the time-averaged a) thrust and b) power coefficients for all motion amplitudes and phases tested (see Table 1).
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streamwise momentum is added to the wake uw _mw, wheremw is the
mass of water that is accelerated from rest to velocity uw. The same
thrust can be generated by accelerating a smallmass ofwater to a high
velocity (small, fast motions) or a large mass of water to a low
velocity (big, slow motions). The power that the system has to
expend in order to overcome the body drag D during steady
swimming at a velocity U∞ is the product of drag and speed; that is,
DU∞ � uw _mwU∞. We think of this as the useful power. The total
power expended by the system includes the useful power and the
power lost to the wake, which is equal to the rate at which the kinetic
energy of the wake is increased: �1∕2�u2w _mw. The efficiency of the
system is the ratio of the useful to total power, and so

η � U∞

U∞ � �1∕2�uw
This simple analysis suggests that, for more efficient motions, it is

desirable to minimize uw∕U∞. For a given thrust, big, slow motions
should be more efficient than small, fast motions.

IV. Conclusions

A heaving and pitching teardrop foil was studied
experimentally in an effort to understand its thrust and efficiency
behavior. Combining heave and pitch motions generally achieves
improved performance as compared to heave or pitch in
isolation, as found in previous work. A critical parameter was the
phase difference between the heave and pitch motions. Peak
thrust occurred near ϕ � 330 deg, and the minimum power
occurred near ϕ � 210 deg. The peak efficiency occurred near
ϕ � 270 deg, where the smallest peak angles of attack occurred.
At this most efficient phase angle, it was found that the

component of the power required to rotate the foil in its pitching

motion was actually negative in the mean, indicating that, at this

phase angle, the fluid was doing work to help the motion.
To help understand these results, the scaling relations for the mean

thrust and power generated by a heaving and pitching foil were

developed by considering lift-based and added mass forces and

moments, which were based on the relations for heaving or pitching

foils developed by Floryan et al. [19]. These scaling relations
described the experimental performance behavior well and indicated

the need to increase the motion amplitudes (specifically pitch angle)

while minimizing the peak angle of attack to increase thrust and

efficiency.
The results of [8–10] on large-amplitude heaving and pitching foils

lend confidence to the current conclusions; they use relatively large

motions (h0∕c up to 0.75 and θ0 up to 65 deg) as compared to the

experiments described here while keeping the angle of attack small

(α0 ≈ 20 deg), leading to very high propulsive efficiencies:

η ≈ 0.55–0.8. For the present experiments on a teardrop airfoil,
efficiencies of 45–50% are obtained over a large parameter space

of motion amplitudes. Some cases display efficiencies as high as

60–75%, but the peak values are very sensitive to the drag on the

foil, and so the foil profile is likely to be a crucial design parameter.

Such considerations will be left for future study.

Appendix A: Complete Performance Results

Figures A1–A6 show the nondimensional input parameters
(Strouhal number, trailing-edge amplitude to chord ratio, and peak

angle of attack) and time-averaged output performance (thrust,

power, efficiency) for all the phase offsets, frequencies, heave

amplitudes, and pitch amplitudes tested (see Table 1).

Fig. A1 Impact of phase offset (ϕ, azimuthal axis) and reduced frequency (f�, radial axis) on Strouhal number for the following combinations of heave
amplitudes: a)h0∕c � 0.375, b) 0.25, and c) 0.125; andpitch amplitudes i) θ0 � 5 deg, ii) 10 deg, and iii) 15 deg.The frequency increases radially outward,
with lines marking levels at f� � 0.16; 0.24; : : : ; 0.64.
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Fig. A2 Impact of phase offset (ϕ, azimuthal axis) and reduced frequency (f�, radial axis) on the peak trailing-edge amplitude to chord ratio. Subfigures
cases as in Fig. A1.

Fig. A3 Impact of phase offset (ϕ, azimuthal axis) and reduced frequency (f�, radial axis) on the peak angle of attack. Subfigures cases as in Fig. A1.
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Fig. A4 Impact of phase offset (ϕ, azimuthal axis) and reduced frequency (f�, radial axis) on the thrust coefficient. Subfigures cases as in Fig. A1.

Fig. A5 Impact of phase offset (ϕ, azimuthal axis) and reduced frequency (f�, radial axis) on the power coefficient. Subfigures cases as in Fig. A1.
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Appendix B: Foil Viscous Drag Assessment

As the foil becomes still (f → 0), the viscous drag of the foil should
depend on the mean projected area of the foil over the entire motion

cycle. Accordingly, the drag should only be a function of the pitch

amplitude and not a function of the heave amplitude. Figure B1 shows

the drag coefficient as it varies with motion amplitude for heaving and

pitching motions at three very low frequencies. The forces due to

viscous drag are low; thus, the experiments are repeated 10 times each

and the uncertainty bars on the symbols reflect the standard deviation

of the data. Note that points at heave amplitudes h0 � 20, 25, and
30mm for a frequency off � 0.05 Hz are removed because the linear

actuator cannot operate smoothly at this combination of low

frequency/high amplitude. The drag coefficient is clearly a function of

the pitch but not the heave amplitude for steady motion.
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