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Nonsinusoidal gaits for unsteady propulsion
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The impact of wave-form shape on the wake and propulsive performance of a pitching
and heaving two-dimensional foil is explored experimentally. Jacobi elliptic functions are
used to define wave-form shapes that are approximately triangular, sinusoidal, or square.
The triangular-like and sinusoidal waves produce qualitatively similar wakes, with a typical
reverse von Kármán vortex street structure leading to a jetlike wake in the mean. Square-like
motions produce very different results, with a vortex pair shed every half cycle, leading
to a mean wake with two distinct off-center jets, and a significant change in the thrust
production, yielding up to four times more thrust for a given Strouhal number. Performance
curves indicate that to swim most efficiently sinusoidal motions are best, whereas the
square-like motions lead to higher speeds. A scaling analysis indicates that the peak lateral
velocity appears to be the dominant parameter in characterizing the performance of the
nonsinusoidal motions.
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I. INTRODUCTION

Certain aquatic animals, for example, dolphins, sailfish, and tuna, are capable of extraordinary
swimming performance, with the ability to swim fast and efficiently over long distances. This
observation has prompted many researchers to study the propulsive characteristics of fish to help
design new aquatic propulsion technologies [1–3]. With very few exceptions, these investigations
have only considered sinusoidal motions [4–8], although fish and swimming mammals may use
different actuation wave forms while swimming near a boundary or a water surface, during
maneuvering, or when performing burst and coast-type swimming [9–12]. The experiments that
have been performed on unsteady foils have shown that deviations from sinusoidal actuation changes
the structure of the wake [13] and affects the propulsive performance [14,15], results that were
confirmed by numerical study [16]. Despite this work, it is clear that our understanding of the
effects of wave-form shape on swimming performance is only rudimentary. Here, we explore a
simple family of wave-form shapes chosen because of their ease of implementation. Although these
specific wave-form shapes may not have been observed in nature, we are not bound by the limits of
biology and there is much to learn by moving beyond them.

To understand these effects better, we consider the performance of a two-dimensional foil
undergoing pitching (twisting about the leading edge) and heaving (lateral foil translation) motions
with nonsinusoidal wave forms. In unsteady propulsion, there are two main contributions to the
forces acting on the foil: quasisteady lift-based forces [17] and added mass forces due to fluid
acceleration [18]. Changing the actuation wave form alters the relative contributions of these forces.
For example, a square wavelike motion has a larger peak acceleration than a sinusoidal motion
with the same frequency and amplitude, and thus it experiences a relatively larger added-mass force
contribution. We find that the actuation wave-form shape can have a substantial effect on the thrust
and efficiency over a large range of frequencies and amplitudes and a dramatic effect on the vortex
structure in the wake of the foil.
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FIG. 1. Experimental setup.

II. EXPERIMENTAL SETUP

Experiments were conducted in a water channel on a pitching or heaving foil, as shown in
Fig. 1. The water channel is a free-surface recirculating facility with a 0.46-m-wide, 0.3-m-deep, and
2.44-m-long test section. Surface waves were minimized through baffles equipped on the top surface.
The free-stream velocity U was fixed at 60 mm/s with a maximum turbulence intensity of 0.8%.

A nominally two-dimensional teardrop foil was used, with a chord of c = 80 mm, maximum
thickness 8 mm, and span s = 279 mm, resulting in a chord-based Reynolds number of Rec = 4870.
The foil extended from the bottom of the tunnel to the surface baffles, with gaps of less than
5 mm. Heaving motions were driven by a linear actuator (LinMot PS01-23x80F-HP-R) on air
bearings (NewWay S301901), and pitching motions were controlled through an RC motor (Hitec
HS-8370TH). Both motion types were monitored via encoders.

Jacobi elliptic functions define the motion wave form [19], resulting in a continuous space of
wave forms controlled by a single parameter, the elliptic modulus κ , spanning from approximate
triangular waves (κ = −1), to sinusoidal waves (κ = 0), to approximate square waves (κ → 1). To
avoid motions with unreasonably high accelerations, we varied κ from −0.99 to 0.99. The wave-form
shapes are not perfectly triangular and square, and will be hereby referred to as triangular-like and
square-like motions. See Fig. 2 for examples of wave-form shapes (colored circles will be used for
explanation in Sec. III).
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FIG. 2. Jacobi elliptic functions produce varying actuation wave-form shape based on the elliptic modulus,
κ . Colored circles represent points of vortex production in the cycle based on particle image velocimetry (PIV)
measurements, and smaller circles correspond to secondary vortices (see Sec. V).
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FIG. 3. Thrust coefficient as a function of elliptic modulus. (a) Heaving at reduced frequency f ∗ = 1.2;
(b) pitching at f ∗ = 0.87. The wave forms range from triangular-like (κ = −0.99), to sinusoidal (κ = 0), to
square-like (κ = +0.99).

The thrust, power, and efficiency were measured using a six-component force-torque sensor (ATI
Mini40), with force and torque resolutions of 5×10−3 N and 1.25×10−4 N m, respectively. The
heave and pitch amplitudes ranged from h0 = 5 to 15 mm every 2 mm and θ0 = 3◦ to 15◦ every
2◦. The actuation frequency f was varied such that the Strouhal number St = 2f A/U ranged from
0.05 to 0.4 in increments of 0.025, with a maximum frequency of 2 Hz. Here, A is the trailing edge
amplitude of motion. Square-like motions exceeding frequencies of 1.2 Hz were not investigated
because they excited an undesirable structural resonance. Each trial consisted of 30 cycles, and the
data were averaged over the middle 20 cycles. Each trial was repeated a minimum of 5 times to
ensure repeatability and reduce uncertainty.

Flow velocities were measured using two-component particle image velocimetry (PIV). Neutrally
buoyant silver-coated hollow ceramic spheres (Potter Industries Inc., Conduct-O-Fil AGSL150 TRD)
were used to seed the flow, illuminated on the midspan using a CW argon-ion laser (Spectra Physics
2020). An 8-bit monochrome CCD camera (MotionXtra HG-LE) with 1128×752 resolution was
used to acquire images at 25 Hz. A minimum of 10 actuation periods were sampled for phase
averaging. Three PIV windows were taken and stitched together to encompass the entire flow
around the foil and 1.5 chords downstream in the wake. Sequential images were processed using
commercial DaVis software using spatial correlation interrogation window sizes of 64×64 and twice
at 32×32 with 50% overlap. The full vector field contained a grid size of 119×47 velocity vectors.
Average and instantaneous velocity errors are estimated to be 2.7% and 1–5%, respectively [20].

III. PROPULSIVE PERFORMANCE

Performance measurements range from St = 0.05 to 0.4 every 0.025 with multiple amplitudes
and frequencies. The thrust coefficient, power coefficient, and efficiency are defined according to

CT = Fx

1
2ρU 2sc

, CP = Fyḣ + Mzθ̇
1
2ρU 3sc

, η = CT

CP

, (1)

where Fx and Fy are the streamwise and cross-stream forces acting on the foil, Mz is the spanwise
moment, and ρ is the fluid density.

The effect of changing the elliptic modulus on the thrust coefficient is shown in Fig. 3, where
f ∗ = f c/U is the reduced frequency. We see that the thrust for both heaving and pitching motions
is essentially constant for most values of κ , but for more square-like wave-forms motions the thrust
increases dramatically, with an earlier onset for heave (κ = 0.5) than for pitch (κ = 0.99).
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FIG. 4. Performance as a function of Strouhal number for (a) heave and (b) pitch. Subfigures show (i) thrust
coefficient, (ii) power coefficient, and (iii) efficiency. Symbol color identifies the wave-form shape, and tone
represents amplitude of motion ranging from low (dark) to high (light). For heave, h/c = 6.25% to 18.75%
every 2.5%. For pitch, θ = 3◦ to 15◦ every 2◦.

The changes in thrust and power with wave-form shape are clearly seen in Fig. 4 across a range
of Strouhal numbers. For both heave and pitch, the thrust and power increase monotonically with
Strouhal number, and square-like motions exhibit higher thrust and power than the triangular-like
and sinusoidal motions. Also, thrust and power coefficients for heave are typically considerably
larger than for pitch, with similar efficiencies. This corroborates Fig. 3.

For pitching motions, the effect of viscous drag is to reduce the thrust by an almost constant offset
(see Floryan et al. [21]). This effect is more pronounced for the square-like motions [most visible
in Fig. 4(b)(i) at low Strouhal numbers] because the foil spends more time near its maximum pitch
angle, though similar trends exist in the other motion types. For heaving motions, a similar effect of
increasing drag with increasing amplitude of motion is observed, but the drag does not produce a
simple offset, and the larger amplitude of the thrust obscures the trend somewhat.
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FIG. 5. Efficiency vs thrust coefficient for (a) heave and (b) pitch. Symbols and colors as in Fig. 4.

For efficiency, the effects of wave-form shape are more subtle. In heave, the peak efficiency
does not appear to be affected very much by wave-form shape, although the Strouhal number
corresponding to the peak efficiency occurs at a much lower value for the square-like motion,
accompanied by a much more rapid drop-off at higher Strouhal numbers. In pitch, there are slightly
higher peak efficiencies in the sinusoidal motions, but only at the lowest amplitude. Generally, the
location of peak efficiency occurs at lower Strouhal numbers for higher elliptic moduli.

Perhaps a more practical way to view efficiency is to show it as a function of thrust, as given in
Fig. 5. For heave, the effects of wave-form shape are rather minor (within the range of amplitudes
studied here), but for pitch increasing κ tends to decrease the efficiency at a given thrust, and the
highest peak efficiency is achieved with sinusoidal motions. We see that actuation wave form can be
used to regulate thrust-efficiency tradeoffs during locomotion, for a given frequency and amplitude.

IV. PERFORMANCE SCALING

Floryan et al. [21] found that for sinusoidal motions of a two-dimensional foil similar to that
used in the present study, the thrust and power coefficients scaled with both Strouhal number St and
reduced frequency f ∗ according to

CT = c1 St2 + c2 St2 f ∗U ∗ − CDh
, CP = c3 St2 + c4 St2 f ∗ + c5 St2 f ∗U ∗

for heaving motions, and

CT = c6 St2 − CDp
, CP = c7 St2 + c8 St2 f ∗

for pitching motions. Here CDh
and CDp

are the drag coefficients for each motion, and c1 − c8 are
empirical constants.

For sinusoidal motions, the trailing-edge position, velocity, and acceleration (at a given phase)
are completely defined by the amplitude of the motion A and the actuation frequency f . For motions
that follow Jacobi elliptic functions, the position, velocity, and acceleration will also depend on the
elliptic modulus κ . Figure 6 presents the peak velocity, ȧ, and acceleration, ä, of the trailing edge
for motion types ranging from −0.99 � κ � 0.99, normalized by their respective sinusoidal values.
The peak velocity and acceleration behave similarly, in that they are relatively unchanged at lower
elliptic moduli but increase sharply as κ approaches 1. The variation of thrust with κ (see Fig. 3)
suggests that the thrust may scale with wave-form peak velocity, especially for heaving motions.

To explore this possibility, we introduce a trailing edge peak velocity scale, ȧ∗ = ȧ/ȧκ=0, which
only varies with elliptic modulus. We find that P2, a quadratic function of ȧ∗, can be used to scale
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FIG. 6. Peak velocity and acceleration as it varies with elliptic modulus.

the performance, where

P2 = b1 ȧ∗ + b2 ȧ∗2 (2)

and b1 and b2 are constants. Figure 7 shows that the thrust and power coefficients scaled with P2 are
nearly constant across the entire range of κ , and the highly nonlinear variation with elliptic modulus
is almost entirely removed.

When we combine the scaling of Floryan et al. [21] with the peak velocity scaling parameter,
P2 (without changing the empirical constants c1 − c8 from the original analysis), we obtain an
encouraging collapse of the thrust and power coefficients for a large range of motion parameters, as
shown in Fig. 8. It appears that the peak velocity scale, ȧ∗, fully defines nonsinusoidal pitching and
heaving performance, at least for the range of parameters investigated here.

(a)

o

o

o

(b)

(ii)

(i)

FIG. 7. (i) Thrust and (ii) power coefficients scaled by a quadratic function of the peak waveform velocity
[Eq. (2)] as a function of elliptic modulus. (a) Heaving at reduced frequency f ∗ = 1.2; (b) pitching at f ∗ = 0.87.
Faint lines represent unscaled data, as in Fig. 3. Constants: (a) (i) b1 = 0.4, b2 = 0.8; (a) (ii) b1 = 0.4, b2 = 0.8;
(b) (i) b1 = 1, b2 = 0; (b)(ii) b1 = 0.8, b2 = 0.3.
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FIG. 8. The foil (i) thrust and (ii) power modified by the lateral velocity scale plotted against the scaling
proposed by Floryan et al. [21] for (a) heave and (b) pitch. Symbols and tones as in Fig. 4.

V. WAKE EVOLUTION

To investigate the effects of wave-form shape on the vortex shedding from the foil, and the
evolution of the wake, PIV measurements were made at Strouhal numbers of St = 0.2, 0.3, and
0.4, where the Strouhal number was varied by changing the amplitude while keeping the frequency
fixed. We only present results for St = 0.4 since the flow fields at the lower Strouhal numbers were
qualitatively similar.

Figure 9 shows the phase-averaged vorticity field for the heaving foil with triangular-like,
sinusoidal, and square-like motions. The sinusoidal and triangular-like motion types have similar
wake structures, characterized by a reverse von Kármán vortex street that is typical of propulsors
in the thrust state. The structure of the square-like motion is quite different, however, with vortex
pairs released from the trailing edge instead of single vortices. This result in not surprising in that
triangular-like and sinusoidal motions change direction smoothly, thus producing a single vortex per
cycle, whereas a square-like motion stops rapidly, remains stationary for some part of the cycle, and
then movies rapidly in the opposite direction, thus producing two vortices of opposite sign per cycle.
This is shown schematically in Fig. 2. These vortex pairs have higher mutually induced velocities,
causing them to move downstream faster than is the case for the sinusoidal and triangular-like
motions, as indicated by the lines connecting the four phases in Fig. 9.

The pitching foil behavior, shown in Fig. 10, is qualitatively similar. The square-like motion
produces a vortex pair, but the secondary vortex is weaker in pitch than in heave. Also, the primary
trailing edge vortices in pitch are stronger for the square-like motions, whereas in heave there was
no noticeable difference in vortex strength between the three motion types. This may be explained
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FIG. 9. Heaving motions, phase-averaged spanwise vorticity, h/c = 12.5%, St = 0.4. Waveform types:
(a) triangular-like κ = −0.99; (b) sinusoidal κ = 0; (c) square-like κ = 0.99. Phases: (i) φ = 0◦; (ii) 90◦;
(iii) 180◦; (iv) 270◦.

by noting that in pitch the thrust is governed primarily by added mass [21], and a square-like motion
produces higher accelerations than sinusoidal and triangular-like motions, directly impacting vortex
strength. In contrast, in heave the thrust is mostly lift based, so the relationship between foil
acceleration and shed vorticity is more complex.
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FIG. 10. Pitching motions, phase-averaged spanwise vorticity, θ = 14.5◦, St = 0.4. Wave-form types:
(a) triangular-like κ = −0.99; (b) sinusoidal κ = 0; (c) square-like κ = 0.99. Phases: (i) φ = 0◦, (ii) 90◦,
(iii) 180◦, (iv) 270◦.
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FIG. 11. Primary and secondary vortex circulation as a function of elliptic modulus for (a) heaving and
(b) pitching motions at St = 0.4.

The strengths of the primary and secondary vortex are shown in Fig. 11 as a function of the elliptic
modulus. Here, we track the cycle when the primary vortex is positive and the secondary vortex
is negative and we compute the circulation from within a boundary containing only that vortex.
In heave, the primary vortex strength is relatively constant for all wave-form shapes, whereas in
pitch the primary vortex strength increases as the motion becomes more square-like. The secondary
vortex only begins to appear at κ > 0.5 for heave and κ = 0.99 for pitch. In square-like motions,
the primary vortex is twice as strong as the secondary in heave, and in pitch the primary vortex is
three times stronger. The presence of the secondary vortex directly correlates to the large increase
in thrust shown in Fig. 3 at the corresponding values of κ .

The secondary vortex significantly alters the trajectory of the primary vortex, as seen in Fig. 12.
Here the trajectory follows the approximate peak vorticity of the primary vortex. For triangular-like
and sinusoidal motion types, for −0.99 � κ � 0, the primary vortex remains on the side in which it
was formed, which leads to the reverse von Kármán vortex street structure. As the motions become
more square-like (κ > 0.5), the primary vortex moves to the opposite side of the foil as it convects
downstream under the action of the velocity induced by the secondary vortex. In heaving square-like
motions where the strength of the primary and secondary vortices are similar, the vortex pair rapidly
crosses to the side of the foil opposite to the one where it was formed, and then follows the free-stream
direction. In pitch, where the strength of the primary vortex is about three times larger than that
of the secondary vortex, the primary vortex first heads towards the opposite side of the foil before

k = -0.99 (triangle)

k = 0.99 (square)

(a) (b)

FIG. 12. Primary vortex trajectory in the streamwise plane for different values of κ . (a) Heaving and
(b) pitching motions at St = 0.4.
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FIG. 13. Heaving foil. (i) Phase- and (ii) time-averaged �ux (h/c = 12.5%, St = 0.4). Wave form:
(a) triangular-like κ = −0.99, (b) sinusoidal κ = 0, (c) square-like κ = 0.99.

curving back to the original side. This happens because the weaker secondary vortex orbits the
primary vortex, thereby rotating the direction of its induced velocity.

Next, we explore the impact the unsteady foil has on the surrounding velocity field. Figure 13
depicts the phase- and time-averaged change in streamwise velocity, relative to the free-stream, for
the heaving cases shown in Fig. 9(i). Instantaneously, the triangular-like and sinusoidal motions
produce a wavy region of accelerated fluid near the centerline corresponding to the region contained
within the vortex street, with pockets of decelerated flow appearing externally. In the time-averaged
field, this results in a jetlike wake on the centerline. Square-like motions produce pockets of higher
and lower velocity that correspond to the vortex pairs, yielding a time-averaged pair of jets off the
centerline. The velocity fields produced by pitching motions are broadly similar, as shown in Fig. 14,
but the square-like motions do not create a dual jet, only a single wider single jet, because in these
cases the secondary vortex is not strong enough to separate the vortex pair trajectories and produce
two distinct jets in the time average.

To compare the entire range of wave-form shapes tested, the time-averaged velocity profile of the
heaving and pitching panels at x/c = 1 is shown in Fig. 15. In heave, the wake transitions from a
typical jet in triangular-like and sinusoidal motions to a dual jet at κ = 0.5. This directly corresponds
to the generation of the secondary vortex discussed in Fig. 11. For pitching motions, the wake is
jetlike for the entire range of wave-form shapes, though the wake for the square-like motions is
stronger and more spread out than the triangular-like and sinusoidal motions.
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FIG. 14. Pitching foil. (i) Phase- and (ii) time-averaged �ux (θ = 14.5◦, St = 0.4). Wave form:
(a) triangular-like κ = −0.99, (b) sinusoidal κ = 0, (c) square-like κ = 0.99.

VI. CONCLUSIONS

The effects of oscillatory motion shape of a two-dimensional teardrop foil were studied
experimentally in an effort to better understand unsteady fish propulsion and discover new techniques
for improving propulsive performance. The motion types were defined by Jacobi elliptic functions,
which span from approximated triangular-like, through sinusoidal, to square-like wave forms with
a single parameter, the elliptic modulus.

(a) (b)

FIG. 15. Velocity profiles at x/c = 1 for different values of κ . (a) Heave and (b) pitch at St = 0.4.
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The wave-form shape had a dramatic impact on the vortex structure produced in the wake of the
foil. The rapid start and stop of square-like wave type motions produces vortex pairs instead of the
typical vortex street, resulting in a dual-jet velocity wake. These effects are more pronounced in
heave than in pitch, though similar trends were found in both and across all Strouhal numbers studied
(St = 0.2, 0.3, and 0.4). Triangular-like and sinusoidal motions showed more typical behavior, with
a reverse von Kármán vortex street and a single jet wake.

This formation of vortex pairs, and the corresponding time-averaged dual-jet wake associated
with square-like motions, was closely correlated to large increases in the thrust, producing up to
4 times higher forces than the motions with a typical wake. In heave, the peak efficiency was not
impacted by the wave-form shape, whereas in pitch sinusoidal motions had the peak efficiency.
It was found that the performance depended primarily on the peak lateral velocity of the trailing
edge. By using a quadratic form of the lateral velocity scale combined with the scaling of sinusoidal
motions proposed in Floryan et al. [21], the performance data could be collapsed for heaving and
pitching motions for all wave-form shapes investigated here.

Animals and vehicles could thus use nonsinusoidal motions to increase thrust, efficiency, or
swimming speed, depending on the situation. A square wave, for example, could be used to accelerate
quickly, whereas a sinusoid could be used for efficient cruise. This concept is consistent with the
diversity of motion types seen in biological swimmers, and it suggests new strategies for effective
motor control in swimming robots.
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