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Abstract
When swimming animals form cohesive groups, they can reap several benefits. Our understanding
of collective animal motion has traditionally been driven by models based on phenomenological
behavioral rules, but more recent work has highlighted the critical importance of hydrodynamic
interactions among a group of inertial swimmers. To study how hydrodynamic interactions affect
group cohesion, we develop a three-dimensional, inviscid, far-field model of a swimmer. In a
group of two model swimmers, we observe several dynamical phases, including following,
divergence, collision, and cohesion. Our results illustrate when cohesive groups can passively form
through hydrodynamic interactions alone, and when other action is needed to maintain cohesion.
We find that misalignment between swimmers makes passive cohesion less likely; nevertheless, it is
possible for a cohesive group to form through passive hydrodynamic interactions alone. We also
find that the geometry of swimmers critically affects the group dynamics due to its role in how
swimmers sample the velocity gradient of the flow.

1. Introduction

The collective motion of animals can be seen in
numerous examples throughout the animal kingdom
[1]. A canonical example is a large fish school,
which can be defined as a structured and coordin-
ated group of swimming organisms with synchron-
ized movements [2]. Such collective motion of
swimming animals confers several benefits, includ-
ing defence against predators [3–5], enhanced for-
aging success [6], mating success [7], and increased
swimming efficiency [8]. Furthermore, groups are
robust in the sense that if one individual leaves
the group, the group can still retain its advantages
[9]. The benefits of collective motion have even
led roboticists to develop robot swarms that aim to
attain similar functionality [10, 11], but maintain-
ing a cohesive group is a difficult task that requires
unique strategies to coordinate dynamically interact-
ing individuals [12]. We are principally interested in
this aspect of schooling—the cohesion of groups—
especially in the role that hydrodynamic interactions
play.

SinceWeihs’ seminal workmore than 50 years ago
[8], substantial work has been done to understand
how inertial swimmers may harness hydrodynamic
interactions between each other when schooling
[13–28]. Synthesizing these studies, schooling can
lead to reduced energy expenditure when swimming
under the right conditions. A swimmer can reduce
its energy expenditure by maintaining an appropri-
ate phase offset between its kinematics and those of
its neighbors, with the phase offset depending on the
relative location of a swimmer to its neighbor. The
phase relations arise as a result of direct interactions
between two swimmers, or due to the interaction
between a follower and the vortical wake of the leader.
In dense schools, an effect similar to ground effect
may arise [24]. In addition to energy savings, some of
the cited works also note that schooling can increase
swimming speed relative to swimming in isolation.

The hydrodynamic (and other) benefits of school-
ing can only be realized if the appropriate group
structure is maintained. Thus, the dynamics that dic-
tate the motions of freely moving swimmers become
important. These dynamics are governed by the active
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decision-making and social interactions of swimmers
[29, 30], as well as by passive hydrodynamic interac-
tions. A substantial and important body of work on
active decision-making and social interactions exists,
and it has produced a variety of agent-based models
for the interactions between individuals in a group
[31–34]. These models range in complexity, but they
tend to neglect the role of hydrodynamic interactions,
which are expected to have an outsized effect on the
collective motion of swimmers [35]. Here, we focus
on passive hydrodynamic interactions. Considering
only the hydrodynamic interactions allows us to
answer whether a cohesive group can form passively,
or whether feedback control is required to maintain
a cohesive group. Additionally, a deeper understand-
ing of the hydrodynamic interactions may change the
inferences that one makes about social interactions
between animals based on observations of groups
of animals, leading to improved agent-based models
[36], and could also lead to new physics-basedmodels
of underwater robots that could be used for improved
model-based control of groups.

Lighthill famously raised the possibility that the
order observed within groups in nature may pass-
ively arise due to flow-mediated interactions between
group members [37]. Kelly’s earlier analysis of two
spheres moving with equal and constant velocities in
potential flow lent some credence to this possibility
as it showed that the spheres can experience attractive
forces, depending on their configuration [38]. Several
studies have sought to understand the fluid-mediated
dynamics ofmultiple swimmers interacting with each
other [17, 20, 36, 39–46], with nearly all of thembeing
two-dimensional in nature. Ristroph’s work has con-
sistently shown that swimmers in schools passively
and stably arrange themselves so that their motion
has a particular phase offset from incoming vortical
wakes [43–45]. It is important to note that the exper-
iments leading to this conclusion were highly con-
strained, with each model swimmer having only one
unconstrained degree of freedom. Additional uncon-
strained degrees of freedom may qualitatively change
the dynamics, as shown in [47–49], where the two
translational degrees of freedom were unconstrained.
We expect that unconstrained rotational motion will
lead to further changes in the dynamics.

Simplified vortex-dipolemodels that are still two-
dimensional but do not constrain the degrees of free-
dom have been developed to study the cohesion of
groups of swimmers [36, 39–41]. According to these
models, purely hydrodynamic interactions are not
always enough to maintain cohesive groups; active
control on the part of the swimmers is required.

It is unknown how three-dimensional hydro-
dynamic interactions, as well as the additional degrees
of freedom of a three-dimensional world, affect
the stability and cohesion of schools. However, it
is immediately clear that the three-dimensional
dynamics will be different from the two-dimensional

dynamics since the velocity field of a three-
dimensional swimmer decays with distance r as r−3,
while the velocity field of a two-dimensional swim-
mer decays as r−2. Any potential differences are
important since our current understanding of the
role of hydrodynamics in collective motion is based
almost solely on the two-dimensional scenario.

In this work, we take the first step towards under-
standing the passive group dynamics that develop
under three-dimensional hydrodynamic interactions
between swimmers. This understanding is enabled by
the development of a simple model of a freely moving
inertial swimmer that captures the correct leading-
order hydrodynamic interactions between swimmers.
We consider the elemental interactions between a pair
of swimmers. By focusing on their planar dynam-
ics, we are able to conduct a comparative analysis
between two-dimensional and three-dimensional
swimmers, thereby revealing the significance of three-
dimensionality in schooling behavior. Symmetry
reduction allows us to fully characterize the pos-
sible planar dynamics. Additionally, we demonstrate
that the non-planar dynamics of a pair are of the
same character as the planar dynamics, and that it is
possible for a group to be passively cohesive in three
dimensions. Finally, we make observations on how
the geometry of a swimmer affects the dynamics by
comparing swimmers that are long and thin to those
that are short and fat.

2. Mathematical model

At the large Reynolds numbers possessed by iner-
tial swimmers, the flow away from their bodies is
well described by potential flow. Here, we develop
a potential flow model of hydrodynamic interac-
tions between swimmers. First, we describe the flow
induced by the motion of one swimmer. Then,
we develop a model for the dynamics of multiple
swimmers.

2.1. Flow induced by one swimmer
The flow induced by the motion of a body can be
expressed in a multipole expansion. For a body of
constant volume, the leading-order term is a dipole
[50, chapter 4.7], otherwise called a source doublet
[51, chapter 6.4]. This motivates modeling a swim-
mer as a source-sink pair of equal strength separated
by a fixed distance ℓ, which yields a dipole flow at large
distances while also endowing a length scale absent
from a doublet. Effectively, our model represents the
far field of a swimmer. As will become clear later, the
separation between the source and sink unlocks non-
trivial rotational dynamics in our model swimmers.
The streamlines in a plane containing the source-sink
pair are shown in figure 1(a). From a physical stand-
point, the source represents the fore of a swimmer,
which pushes fluid away as the swimmer moves for-
ward. Conversely, the sink represents the rear of a
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Figure 1. (a) Streamlines in a plane containing the swimmer. The swimmer is oriented along the z-axis. The source is highlighted
in red and the sink in blue. (b) Cross-sectional view of the streamlines in the plane z= 0.5. (c) Cross-sectional view of the
streamlines in the plane z=−0.5.

swimmer, where fluid must rush in to fill the void left
by the rear as the swimmer moves forward.

To validate the source-sink pair as an effective rep-
resentation of a swimmer, we compare the flow field
generated by ourmodel to that generated by a tuna, as
calculated in the simulations of Zhu et al [52]. In their
work, Zhu et al employed a three-dimensional panel
method to simulate both fish and fish-like robots in
an inviscid flow, which agreed reasonably with exper-
imental measurements. The streamlines produced by
the source-sink pair are shown in three different
planes in figure 1. The qualitative agreement with the
streamlines of the higher-fidelity tuna simulations is
excellent outside of the wake region (see figure 5 in
[52]). Even very close to the body (within a small frac-
tion of the length of the body) the qualitative agree-
ment is excellent. The streamlines in the wake region
differ, which is to be expected since our model does
not include vortex shedding. Despite this limitation,
our approach should reasonably model the far-field
hydrodynamic interactions between swimmers. We
return to a discussion of the limitations of the model
later.

Alternatively, one could model the swimmer as
a thin vortex ring of fixed shape, whose streamlines
are shown in figure 2. Although the flow induced by
the vortex ring is quite different from that induced by
the source-sink pair close to the singularities, the far-
field flows are both dipolar and are therefore repres-
entative of what one would expect from a swimmer.
In prior two-dimensional work, swimmers have been
modeled as counter-rotating pairs of point vortices
[36, 39–42], analogous to a thin vortex ring in three
dimensions.

We explored modeling a swimmer as a thin three-
dimensional vortex ring. In our model, the ring was
discretized into a set of evenly spaced material points,
induced velocities were evaluated using the Biot–
Savart law as described in [53], the cut-off method
was employed to de-singularize induced velocity

Figure 2. Streamlines in the plane of rotational symmetry
for a vortex ring.

calculations [54, chapter 11.1], and we developed a
numerical procedure to enforce that the shape of
the vortex ring not change in time. Besides being
more complex and computationally expensive than
the source-sink pair model, we believe that the vor-
tex ring model is less representative of typical swim-
mers for reasons that will be clarified in the ensuing
section. Thus, the work described here focuses on the
source-sink pair model.

2.2. Dynamics of freely moving swimmers
At a displacement r away from a source, the velocity
induced by it is

u=
σ

4π

r

r3
, (1)

where σ ⩾ 0 is the volumetric flow rate, and r= |r|.
The velocity induced by a sink is the negative of the
above expression.
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The strength of the source and sink that comprise
the model swimmer clearly should be related to the
speed of the swimmer. We take the swimmer’s speed
U to be equal in magnitude to the velocity that the
source (sink) induces on the sink (source), U= σ

4πℓ2 ,
but opposite in direction in order to be consistent
with the physical picture that the source corresponds
to the fore of the body and the sink to the rear. An
isolated swimmer moves in the direction parallel to
its body at a speed U, and we refer to its velocity as
the self-propelled velocity.

When more than one swimmer is present, they
will mutually affect each other’s motions. To determ-
ine the hydrodynamic interactions, we treat each
swimmer as a dumbbell comprising two beads con-
nected by a rigid rod, the beads respectively co-
located with the source and sink. This dumbbell
representation is common in the microswimmer
literature [55–59]. In this representation, all the
hydrodynamic forces are concentrated on the beads,
and the rigid rod serves to keep the length of the
dumbbell fixed.

Consider one bead of a swimmer. Let R(t) be its
position, V(t) be its velocity, and u0(x, t) be the velo-
city field induced by the other bead and swimmers
in the absence of the bead under consideration. For
an incompressible, irrotational, and inviscid flow, the
force on the bead is

F= ρV
[
(1+CM)

Du0
Dt

∣∣∣
x=R

−CM
dV

dt

]
, (2)

where ρ is the density of the fluid, V is the volume
of the bead, CM is the added mass coefficient of the
bead, D

Dt is the material derivative, and d
dt is the time

derivative following the bead [60].
Applying Newton’s second law to the bead gives

dV

dt
=

1+CM

1+CM +∆ρ/ρ

Du0
Dt

∣∣∣
x=R

, (3)

where ∆ρ= ρs − ρ is the difference between the
swimmer’s density ρs and the fluid’s density. When
∆ρ= 0,

dV

dt
=

Du0
Dt

∣∣∣
x=R

. (4)

That is, the beadmoves as amaterial point if the dens-
ity of the swimmer is equal to that of the fluid.

For each swimmer, therefore, we take the velo-
city of the source to be equal to the sum of the self-
propelled velocity and the velocity induced by the
sources and sinks of all other swimmers. The velocity
of the sink is calculated the sameway. Since swimmers
have approximately the same density as the surround-
ing fluid, treating the velocities of the source and sink
in this way is reasonable. In contrast, this may be a
poor approach for flying animals (depending on their
size) since they are typically significantly denser than
the air they fly in; the relatively high inertia of a flying

Figure 3. Representation of a single swimmer.

animal would lead it to respond much more slowly to
its surrounding flow.

Left unconstrained, the distance between the
source and sink would not remain constant, corres-
ponding to a swimmer whose length changes. To
maintain a constant distance between the source and
the sink, we adopt the following procedure, which is
applied to every swimmer. Let xf be the position of
the source, xb the position of the sink, and xc the pos-
ition of the swimmer’s center, so that xc =

1
2 (xf + xb).

The swimmer’s configuration is completely specified
by the position of its center and its orientation, which
is given by a unit vector n that points from the sink
to the source; see figure 3. We express xf and xb in
terms of xc, the swimmer’s length ℓ, and the swim-
mer’s orientation:

xf = xc +
1

2
ℓn,

xb = xc −
1

2
ℓn.

(5)

The velocities of the source and sink are

dxf
dt

= vf +λn,

dxb
dt

= vb −λn,

(6)

where vf and vb respectively correspond to the uncon-
strained velocities of the source and sink due to the
self-propelled velocity and interactions with other
swimmers. The additional term λn, in which λ may
be thought of as a Lagrange multiplier, corresponds
to an attractive/repulsive velocity that ensures that
the length of the swimmer remains constant: dℓ

dt = 0.
Adding this term is equivalent to a force that acts on
the source and the sink to either push them toward
each other or pull them apart. Note that this term acts
in the direction of n and does not produce any net
translation or rotation of the swimmer.

To find λ, take the time derivative of xf − xb = ℓn
to arrive at

vf − vb + 2λn=
dℓ

dt
n+ ℓ

dn

dt
. (7)
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Figure 4. Rotational dynamics of the source-sink pair model. (a) A gradient along the body of the crossflow results in rotation.
(b) A gradient across the body of the body-parallel velocity does not result in rotation.

Taking the dot product with n and recalling that dn
dt

has no component in the direction of n yields

(
vf − vb

)
·n+ 2λ=

dℓ

dt
= 0

=⇒ λ=−1

2

(
vf − vb

)
·n. (8)

With λ in hand, we can find equations for
the evolution of the swimmer’s position xc and
orientation n. From (6), the swimmer translates
according to

dxc
dt

=
1

2

(
vf + vb

)
, (9)

and from (7), its orientation evolves according to

dn

dt
=

1

ℓ

(
vf − vb + 2λn

)
=

1

ℓ

{
vf − vb −

[(
vf − vb

)
·n

]
n
}
. (10)

The swimmer translates at the sum of the self-
propelled velocity and the average of the induced
velocities at its source and sink due to other swim-
mers. Thus, the swimmer’s body acts to spatially filter
the velocity field induced by all other swimmers.

The orientation dynamics are rather interesting.
Remark that the swimmer can rotate despite the flow
being irrotational. This is possible because of the
finite length of the swimmer and the non-zero rate
of strain in the flow. In (10), the term inside of the
braces is the component of vf − vb perpendicular to n,
i.e. the component in the plane normal to the swim-
mer’s body. The orientation dynamics are thus given
by the gradient along the unit normal of the compon-
ent of the velocity in the plane normal to the swim-
mer’s body. In other words, the swimmer samples
the gradient of the crossflow along its body, leading
to rotation. A schematic explanation is illustrated in
figure 4. This is how a short, inextensiblematerial line
would deform in a flow. For a swimmer modeled as a
thin vortex ring, it would sample the gradient of the

body-parallel velocity in the plane of the vortex ring
(i.e. the gradient across the swimmer’s body rather
than along it), which leads to qualitatively different
dynamics. The rotational dynamics are illustrated in
figure 5, and should be contrasted with those of the
source-sink pair in figure 4. For swimmers that are
long and thin, the source-sink pair model is reason-
able since the orientation dynamics of such swim-
mers would be dominated by the crossflow velocity
gradient along the length of their bodies. Conversely,
the orientation dynamics of short and fat swimmers
would be dominated by the velocity gradient across
their bodies, making the vortex ring model appropri-
ate in that case. Since most swimmers are long and
thin, we use the source-sink pair model.

A dynamical system is formed by concatenat-
ing the position and unit normal of each swimmer
into one state vector and evolving it forward in time
according to (9) and (10). The dynamics are nonlin-
ear, so we numerically evolve the system forward in
time using the fourth-order Runge–Kutta method. At
each step, we re-normalize the unit normal of every
swimmer to have unit length since this is not main-
tained by the Runge–Kutta method.

The preceding discussion is unchanged for two-
dimensional swimmers, except that the velocity
induced by a source in (1) is u= σ

2π
r
r2 , where σ

is the volumetric flow rate per unit depth in two
dimensions. In this case, the self-propelled velocity is
U= σ

2πℓ .

3. Passive dynamics of a pair

We present numerical examples of the three-
dimensional dynamic interactions between a pair
of identical swimmers. Such pairwise interactions
can be thought of as the elemental interactions in
a large school. To facilitate comparison with two-
dimensional models, we focus on planar dynam-
ics, where the swimmers’ bodies are co-planar ini-
tially and, therefore, for all time. This also allows
us to fully characterize the phase space. We also
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Figure 5. Rotational dynamics of the vortex ring model. (a) A gradient along the body of the crossflow does not result in rotation.
(b) A gradient across the body of the body-parallel velocity results in rotation.

include examples of non-planar dynamics. In what
follows, lengths have been non-dimensionalized by
the swimmer’s length ℓ and velocities have been non-
dimensionalized by the self-propelled speed U.

3.1. Symmetry reduction
With two swimmers, the dimension of the state space
is 12, with six variables for each swimmer (three for
the position of its center, and three for the unit nor-
mal describing its orientation). For the planarmotion
of two swimmers, however, leveraging symmetry
allows us to describe the motion of the pair using
only three variables. Specifically, due to a translational
symmetry, only the separation between the swim-
mers’ centers (rather than their absolute positions)
affects the dynamics. Similarly, a rotational symmetry
makes it so that only the relative angle between the
swimmers (rather than their absolute orientations)
affects the dynamics. Without loss of generality, we
place the swimmers in the x–y plane, with one swim-
mer initially oriented in the positive y-direction, sep-
arated from each other by (∆x,∆y), and with a rel-
ative angle ∆θ between them, as in figure 6. In this
smaller three-dimensional symmetry-reduced phase
space, we can fully characterize the possible dynam-
ics. For non-planar dynamics, an additional angle is
required to describe the dynamics.

3.2. Planar dynamics of the three-dimensional
model
Several qualitatively different sets of dynamics are
possible, some simple and expected, others com-
plex and unexpected. The simplest dynamics occur
when the swimmers are co-linear (∆x= 0 and∆θ ∈
{0,π}). In this case, the swimmers remain co-linear
for all time.When the swimmers have the same initial
orientation (∆θ = 0) and do not intersect (|∆y|> 1),

Figure 6. Symmetry-reduced configuration of a
co-planar pair of swimmers.

they move at equal steady speeds, causing their sep-
aration ∆y to remain constant, no matter its value.
Their speed depends on their separation as v= 1+

2|∆y|
(∆y2−1)2 . The speed increases monotonically as the
swimmers are positioned closer to each other, reflect-
ing a drafting phenomenon. The speed diverges as

1
2(|∆y|−1)2 as |∆y| → 1+, and approaches the self-

propelled speed as 2
|∆y|3 as |∆y| →∞, as shown in

figure 7. The divergence in speed when the swim-
mers are very close is non-physical; we must keep in
mind that wemodel the far-field hydrodynamic inter-
actions, which may poorly reflect reality when the
swimmers are very close. Since the separation remains
constant, such in-linemotion forms a locus of relative
equilibria.

When the swimmers are co-linear but have
opposite orientations (∆θ = π), they can either
face each other (∆y> 1) or face away from each
other (∆y<−1). When they face each other, they

6
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Figure 7. Swimmers’ speed as a function of their separation
for a co-linear configuration for the three-dimensional
model.

approach each other at a speed d∆y
dt =−2+ 4∆y

(∆y2−1)2 .
Note that there is a stable equilibrium at∆y≈ 1.684
where the swimmers directly face each other and do
not move. At smaller separations the swimmers push
each other away, while at larger separations the swim-
mers approach this equilibrium.When the swimmers
face away from each other, they continually separate
at a speed d∆y

dt = 2− 4∆y
(∆y2−1)2 , quickly approaching

their self-propelled speeds as |∆y|−3.
For initial configurations where the swimmers are

not co-linear, we observe several interesting behavi-
ors. To start, we consider the case when the swim-
mers have the same orientation (∆θ = 0). When
the separation between the swimmers is small, they
may collide into each other. Such collisions are non-
physical—at least for the manner in which they occur
under our model, where the swimmers turn away
from each other before their rears suck each other
in (figure 8(a)). At larger separations, the swimmers
can diverge from each other (figure 8(b)), they can
become locked in a simple braid-like motion that
is a relative periodic orbit (figure 8(c)), or they can
become locked in a complex braid-like motion that is
also a relative periodic orbit (figure 8(d)). Complex
braid-like motions are those where the path of a
swimmer intersects itself. For the relative periodic
orbits, the relevant symmetry is the translational sym-
metry. The latter two types of motions correspond to
a cohesive pair of swimmers.

The possible behaviors for ∆θ = 0 are summar-
ized in the phase diagram in figure 9, which shows
what behaviors are achieved for given initial config-
urations. There is a clear division between configur-
ations that lead to divergent motions and those that
lead to cohesive motions. The boundary between the
two is especially of interest to us because we are ulti-
mately interested in whether cohesive groups can be
formed by passive hydrodynamic interactions alone.
The boundary separates configurations that lead to
cohesive groups from those that do not.

To locate the boundary separating cohesive ini-
tial configurations from divergent configurations, we
use the fact that a configuration on the boundary
is a relative equilibrium of the dynamical system.
Moreover, in a boundary configuration, the swim-
mers do not rotate. Since, without loss of generality,
the swimmers’ unit normals both point in the posit-
ive y-direction in their initial configuration, bound-
ary configurations must satisfy dn

dt · e1 = 0, where e1
is the unit vector in the positive x-direction. Applying
this condition to one of the swimmers yields an impli-
cit equation for the boundary,

2∆x

(∆x2 +∆y2)3/2
− ∆x[

∆x2 +(∆y− 1)2
]3/2

− ∆x[
∆x2 +(∆y+ 1)2

]3/2 = 0, (11)

which we solve numerically using a root-finding
algorithm. At large separations, the boundary is given
by |∆y| ≈ 1

2 |∆x|. The boundary is drawn in the phase
diagram in figure 9. Note themirror symmetry across
both axes.

For initial configurations with ∆θ ̸= 0, in addi-
tion to the classes of motion observed when ∆θ
= 0, we also observe orbital motions (figure 10(a))
and complex orbitalmotions (figure 10(b)). Complex
orbital motions are those for which dθ

dt changes sign
for each swimmer, where θ gives the orientation of
a swimmer. Both of these classes of motion cor-
respond to relative periodic orbits, where the rel-
evant symmetry is the rotational symmetry, not
the translational symmetry as for the braid-like
motions. Without symmetry reduction, the dynam-
ics are quasiperiodic. Notably, swimmers undergoing
these motions have no net displacement.

The possible behaviors for ∆θ ̸= 0 are summar-
ized in the phase diagrams in appendix A, which show
what behaviors are achieved for given initial configur-
ations. In contrast to when∆θ = 0, the set of config-
urations leading to a cohesive group is compact and
decreases in size as |∆θ| increases. In other words,
misalignment of the swimmers leads them to diverge
from each other.

We can gain some additional insight from the
full three-dimensional symmetry-reduced phase dia-
gram. In figure 11(a), we show the volume of con-
figurations that lead to a cohesive group. The cent-
ral column mostly consists of configurations caus-
ing the swimmers to non-physically collide. The
volume consists of a continuum of relative periodic
orbits, some of which are included for illustration in
figure 11(b). We have also plotted the boundary sep-
arating cohesive configurations from divergent ones
for ∆θ = 0. Recall that the boundary consists of rel-
ative equilibria. The bottom and top surfaces of the
volume meet at this boundary. These bottom and
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Figure 8. Planar trajectories of two swimmers for different initial conditions with∆θ = 0. (a) ∆θ = 0,∆x= 0.5,∆y= 0. In
(a), the two swimmers’ bodies are represented by arrows whose colors represent time (darker is a later time). (b) ∆θ = 0,
∆x= 5,∆y= 0.5. (c) ∆θ = 0,∆x= 1,∆y= 1. (d) ∆θ = 0,∆x= 0.5,∆y= 1.

Figure 9. Phase diagram for∆θ = 0 for three-dimensional swimmers.

top surfaces, therefore, contain a continuum of het-
eroclinic connections in the symmetry-reduced phase
space, an example of which is shown in figure 11(b).

Each relative heteroclinic connection corresponds to
a transition from one steadily moving configuration
to another.
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Figure 10. Planar trajectories of a pair of swimmers for different initial conditions with∆θ ̸= 0. (a)∆θ = π
4
,∆x=−0.5,

∆y= 1.5. (b)∆θ = π
3
,∆x= 0.5,∆y= 1.0.

Figure 11. (a) Configurations in the symmetry-reduced phase space that lead to a cohesive group. (b) Dynamical features of
importance: relative periodic orbits (solid red); locus of relative equilibria (dashed black); and relative heteroclinic orbit
(dash-dotted red) connecting two relative equilibria (red points).

3.3. Planar dynamics of the two-dimensionalmodel
The phase diagrams for the two-dimensional swim-
mers are shown in appendix B. There are no
significant qualitative differences between them
and the phase diagrams for three-dimensional
swimmers. The observations we have made
regarding group cohesion for three-dimensional
swimmers transfer over to two-dimensional
swimmers.

There are some quantitative differences worth
noting. When the swimmers are co-linear, have the
same initial orientation (∆θ = 0), and do not inter-
sect (|∆y|> 1), they move at equal steady speeds that

depend on their separation as v= 1+ 1
∆y2−1 . The

speed increases monotonically as the swimmers are
positioned closer to each other. The speed diverges
as 1

2(|∆y|−1) as |∆y| → 1+, and approaches the self-

propelled speed as 1
∆y2 as |∆y| →∞, as shown in

figure 12. The speed is greater than in the three-
dimensional model when |∆y|> 1+

√
2, but is less

for closer separations. When the swimmers are co-
linear but have opposite orientations (∆θ = π), they
can either face each other (∆y> 1) or face away
from each other (∆y<−1). When they face each
other, they approach each other at a speed d∆y

dt =
−2+ 2

∆y2−1 . There is a stable equilibrium at ∆y=

9
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Figure 12. Swimmers’ speed as a function of their separation for a co-linear configuration for the two-dimensional model.

Figure 13. Phase diagram for∆θ = 0 for two-dimensional swimmers.

√
2, which is closer than in the three-dimensional

model. When the swimmers face away from each
other, they continually separate at a speed d∆y

dt =
2− 2

∆y2−1 , quickly approaching their self-propelled

speeds as |∆y|−2.
The two-dimensional model also shows a clear

boundary in phase space separating cohesive and
divergent configurations when ∆θ = 0, correspond-
ing to a locus of relative equilibria. The phase diagram
and boundary are shown in figure 13. The boundary
satisfies

2∆x
∆x2 +∆y2

− ∆x

∆x2 +(∆y− 1)2
− ∆x

∆x2 +(∆y+ 1)2
= 0.

(12)

At large separations, the boundary is given by |∆y| ≈
1√
3
|∆x|. The set of cohesive configurations is larger

for the three-dimensional model.

Although the two-dimensional swimmers largely
have the same behavior as the three-dimensional
swimmers, we emphasize that we have only compared
the planar dynamics since two-dimensional swim-
mers are limited to planar dynamics. The three-
dimensional model we have developed allows for
non-planar dynamics, thereby enabling the study of
the dynamics of three-dimensional schools.

3.4. Non-planar dynamics of the three-dimensional
model
For fully three-dimensional dynamics, an additional
angle is required to describe all possible non-
redundant initial configurations of a pair of swim-
mers. Without loss of generality, we place the center
of the first swimmer at the origin and direct its unit
vector n1 along the x-axis. The center of the second
swimmer is placed in the plane z= 0, and its unit vec-
tor n2 = Rz(∆α)Ry(∆β)n1 is produced by rotating
n1 about the y-axis by∆β and about the z-axis by∆α.

10
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Figure 14. Non-planar trajectories of a pair of swimmers for different initial conditions. (a)∆x= 2,∆y= 0,∆z= 0,
∆α=−30,∆β =−15. (b)∆x= 1.5,∆y= 1,∆z= 0,∆α=−15,∆β =−15. (c)∆x= 1,∆y= 0.5,∆z= 0,∆α=−18,
∆β =−18.

The rotation matrices are

Rz (∆α) =

cos∆α − sin∆α 0
sin∆α cos∆α 0

0 0 1

 ,

Ry (∆β) =

 cos∆β 0 sin∆β
0 1 0

− sin∆β 0 cos∆β

 . (13)

On the basis of the planar results, we expect that
the additional degree of freedom present in non-
planar dynamics would increase the likelihood that
the swimmers diverge since it allows for greater mis-
alignment between the swimmers. An example of
divergent motion is shown in figure 14(a), where
the swimmers’ paths have been projected onto three
orthogonal planes for clarity. The swimmers initially
interact with each other according to their mutually
induced velocity fields before separating. Once far
enough from each other, the swimmers move along
approximately straight-line paths in directions differ-
ing from their initial orientations due to the initial
interaction.

Despite the potential for greater misalignment,
we nevertheless observe configurations that lead to
cohesive motions that are of the same character as
in the planar case. In figure 14(b) we show a three-
dimensional braid-like motion analogous to the two-
dimensional counterpart in figure 8(c). While the
planar braid consists of two scales of motion (the
oscillation and the mean translation), the non-planar
braid consists of three scales: the oscillation apparent
in figure 14(b), a mean straight-line motion, and a
larger-scale oscillation that is approximately six times
larger than the oscillation apparent in the plot. In
figure 14(c) we show a configuration that leads to
more complex dynamics. For clarity, only a few oscil-
lations are shown. Allowing the motion to evolve
further in time reveals net translation of the pair

of swimmers. This configuration leads to a three-
dimensional complex braid-like motion analogous
to the two-dimensional counterpart in figure 8(d),
although the non-planar complex braid again con-
sists of three scales of motion (the oscillation appar-
ent in figure 14(c), amean straight-linemotion, and a
larger-scale oscillation), whereas the planar complex
braid consists of two scales of motion.

The non-planar dynamics are apparently very
rich, and a detailed investigation will be the subject
of future work. Most importantly, passively cohes-
ive groups can exist in the fully three-dimensional
problem.

3.5. Geometric effects
Finally, we briefly study the effects of geometry by
comparing long and thin swimmers (source-sink
pairs) to short and fat swimmers (vortex ringmodel).
The phase diagram for the planar dynamics of two
initially aligned (∆θ = 0) vortex-ring swimmers is
shown in figure 15. The region where the vortex rings
overlap is excluded.Weobserve four types ofmotions:
in-line motion, divergence, collision, and oscillatory
motion. Oscillatory motion is qualitatively similar to
the braid-likemotion in figure 8, except that the paths
of the swimmers do not intersect, instead following
an alternating pattern of convergence and divergence.
Although the types of motions are similar to what is
observed for the source-sink model, the phase dia-
gram differs substantially. First, the set of configur-
ations leading to a cohesive group is much smaller
than for the source-sinkmodel. Second, cohesive con-
figurations have small vertical separations, while for
the source-sink model they had large vertical sep-
arations. Third, the vortex rings collide only when
∆y= 0; when they collide, they do so by turning
head-on towards each other. These qualitative differ-
ences in the dynamics of short and fat swimmers com-
pared to long and thin swimmers can be rationalized
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Figure 15. Phase diagram for∆θ = 0 for three-dimensional swimmers modeled as thin vortex rings.

by appealing to how these two types of swimmers
sample the velocity gradient, as was explained in
figures 4 and 5. Interestingly, the dynamicswe observe
in our vortex ring model are qualitatively similar
to the dynamics observed for toroidal swimmers in
Stokes flow [61], despite being at opposite ends of the
Reynolds number spectrum.

4. Conclusion

The collective motion of inertial swimming animals
confers several benefits, but they can be realized only
if a cohesive group can be maintained. Group cohe-
sion depends on the dynamics of freelymoving swim-
mers, in which the passive hydrodynamic interactions
between individuals play a strong role. This naturally
leads one to ask whether a cohesive group can form
passively through hydrodynamic interactions alone.

To understand the passive group dynamics,
we developed a simplified model of the three-
dimensional hydrodynamic interactions between
freely moving inertial swimmers. Our model is based
on the leading-order term of the multipole expan-
sion of the velocity field, and is therefore a far-field
model. Nevertheless, the model accurately captures
the flow created by commonly found long and thin
swimmers, at least qualitatively. Of note is the very
low computational cost of our model.

Since the passive dynamics of swimmers with
three-dimensional hydrodynamic interactions had
not been studied before, we first sought to understand
the role of three-dimensionality. This was accom-
plished by studying the planar dynamics of a pair
of swimmers and comparing them to the dynam-
ics of a pair of swimmers with two-dimensional
hydrodynamic interactions. We observed many

interesting dynamics: braid-like motions, orbiting
motions, divergent motions, and others, which were
thoroughly characterized by phase diagrams. In state
space, we observed relative equilibria, relative peri-
odic orbits, quasiperiodic orbits, and relative hetero-
clinic connections. Most importantly, we found that
certain configurations of the swimmers led to a cohes-
ive group, and thatmisalignment of the swimmers led
them to diverge from each other.

The two-dimensional swimmers largely have the
same planar dynamics as the three-dimensional
swimmers. However, our three-dimensional model
enables the study of non-planar dynamics and three-
dimensional schools. The non-planar dynamics are of
the same character as the planar dynamics, although
we observe the emergence of multiscale dynamics
in the fully three-dimensional problem. Despite the
potential for greater misalignment between swim-
mers, we observe configurations that lead to a pass-
ively cohesive group. A detailed investigation of the
non-planar problem will be the subject of future
work.

We also studied the effects of geometry, finding
that long and thin swimmers have qualitatively dif-
ferent dynamics than short and fat swimmers. The
differences are due to the geometry affecting how the
velocity gradient is sampled: the rotational dynam-
ics of long and thin swimmers are dominated by the
gradient along their bodies of the crossflow, while
for short and fat swimmers they are dominated by
the gradient across their bodies of the body-parallel
flow.

In principle, models that make no simplifications
can be developed. This would amount to direct
numerical simulations of schools of freely mov-
ing swimmers. The largest such three-dimensional

12



Bioinspir. Biomim. 20 (2025) 016014 M NMabrouk and D Floryan

simulation that we are aware of is a recent simula-
tion of a school of 350 swimmers [62]. This single
simulation required parallel computing with adapt-
ive meshing, and significant compute time on a large
computing cluster. With a Reynolds number of 4000
(using the flapping speed as the velocity scale), the
simulated swimmers correspond to a typical natural
swimmer of roughly 1 cm in length [63]. This sim-
ulation is a feat of scientific computing, but it also
underscores that, as a community, we are incred-
ibly far from having the ability to conduct full-
fidelity simulations of large groups of large swim-
mers. The model we have developed in the present
work allows us to explore this very interesting space

of large groups of inertia-dominated swimmers (at
the cost of truncated physics). Ultimately, we aim to
provide insights into suspensions of inertial swim-
mers, as has been done in the viscosity-dominated
limit [55].

This work was supported by the University of
Houston Grants to Enhance and Advance Research
Program, 00 018 9684.
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Appendix A. Phase diagrams for three-dimensional model

The phase diagrams for the planar dynamics of a pair of three-dimensional source-sink swimmers with
∆θ ̸= 0 are shown in figure A.1 in increments of π/12. Symbols and colors are as in figure 9. Outside of the
regions shown, the swimmers diverge from each other; that is, those regions of the phase diagrams are filled
with red diamonds. The phase diagrams for ∆θ < 0 (not shown) are the same as for ∆θ > 0, but reflected
across the∆x= 0 axis.

Figure A.1. Phase diagrams for three-dimensional swimmers for∆θ > 0.
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Appendix B. Phase diagrams for two-dimensional model

The phase diagrams for the planar dynamics of a pair of two-dimensional source-sink swimmers with∆θ ̸= 0
are shown in figure B.1 in increments of π/12. Symbols and colors are as in figure 13. Outside of the regions
shown, the swimmers diverge from each other; that is, those regions of the phase diagrams are filled with red
diamonds. The phase diagrams for ∆θ < 0 (not shown) are the same as for ∆θ > 0, but reflected across the
∆x= 0 axis.

Figure B.1. Phase diagrams for two-dimensional swimmers for∆θ > 0.
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