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Abstract

When groups of inertial swimmers move together, hydrodynamic interactions play a key role in
shaping their collective dynamics, including the cohesion of the group. To explore how
hydrodynamic interactions influence group cohesion, we develop a three-dimensional, inviscid,
far-field model of a swimmer, neglecting the vortical wake produced by swimmers in order to
determine the role that potential flow interactions play on group dynamics. Focusing on

symmetric triangular, diamond, and circular group arrangements, we investigate whether passive
hydrodynamics alone can promote cohesive behavior, and what role symmetry of the group plays.
Under the idealized conditions of our model, we find that far-field interactions alone significantly

impact the cohesion of groups of swimmers. This is an important result because, contrary to
common belief, it shows that interactions with a vortical wake do not solely determine the
cohesion of groups of swimmers. While small symmetric (and even asymmetric) groups can be
cohesive, larger groups typically are not, instead breaking apart into smaller, self-organized
subgroups that are cohesive. Notably, we discover circular arrangements of swimmers that chase
each other around a circle, resembling the milling behavior of natural fish schools; we call this
hydrodynamic milling. Hydrodynamic milling is cohesive in the sense that it is a fixed point of a
particular Poincaré map, but it is unstable, especially to asymmetric perturbations. Our findings
suggest that while passive hydrodynamics alone cannot sustain large-scale cohesion indefinitely,
controlling interactions between subgroups, or controlling the behavior of only the periphery of a
large group, could potentially enable stable collective behavior with minimal active input.

1. Introduction

In nature, collective behavior is widely observed
across animal species [1], where local interactions
among individuals give rise to emergent group-level
patterns and dynamics. Such behavior is prevalent in
groups ranging from insects and fish to birds and
mammals, and is critical for enhancing survival and
reproductive success [2—5]. Collective coordination
enables animals to achieve reciprocal benefits, such as
more efficient predator avoidance [6], reduced indi-
vidual predation risk, and improved foraging and
navigation capabilities [7, 8]. Researchers across dis-
ciplines like robotics and engineering [9-11] have
been drawn to this topic to engineer better swarm

robots that work together in a coordinated manner
and match nature’s design principles.

Though obvious, it is underappreciated that in
order to reap the benefits of collective motion, the col-
lective must remain intact, or cohesive. Maintaining
a cohesive group is complicated by the presence of
an environment that the individuals must contend
with, such as the aerial environments of birds or the
aquatic environments of fish. Not only do such envir-
onments hold the potential to exert exogenous for-
cings on the individuals, such as when a bird encoun-
ters a gust, or when a group of fish encounters a
turbulent flow [12], but they also couple the indi-
viduals to each other through fluid-mediated inter-
actions. In this work, we focus on the hydrodynamic
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interactions between swimmers—which are expec-
ted to play an outsized role in the collective motion
of swimmers [13]—specifically on how they affect
group cohesion. Our interests lie in schools of swim-
mers, in which the swimmers display some degree
of coordination, as opposed to the broader classifica-
tion of shoals, in which swimmers are not necessarily
coordinated [14].

Weihs’ work [15] was the first to link performance
improvement in swimmers with hydrodynamic inter-
actions. He argued that a diamond school arrange-
ment is optimal because it creates constructive vor-
tex interactions, allowing trailing fish to gain higher
velocity without extra energy expenditure by bene-
fiting from leaders’ vortices. Subsequent research has
focused on identifying the specific hydrodynamic
conditions that enable energy savings through col-
lective swimming formations. Ashraf et al showed
that at elevated swimming velocities, fish schools were
observed to adopt lateral alignment patterns, with
hydrodynamic analysis indicating this configuration
reduces energetic costs during sustained high-speed
movement [16]. In another study, the authors showed
that two fish swimming side by side with a phase
difference create a wall effect that reduces energy
expenditure [17], building on previous work show-
ing that the wall effect can increase speed, thrust, effi-
ciency, and lower power, though not all at once [18—
22]. Recent work by Heydari et al demonstrated that
in larger groups, inline formations unevenly distrib-
ute hydrodynamic benefits, with trailing individuals
gaining greater energy savings, up to a critical group
size [23]. In contrast, side-by-side formations were
shown to provide equitable energy savings across all
group members while maintaining stable cohesion
at any scale. Schooling can evidently provide hydro-
dynamic benefits when the appropriate group struc-
ture is maintained. This motivates our investigation
of freely swimming collectives and the dynamics gov-
erning their motion, which depend on social inter-
actions, active decision-making, and passive hydro-
dynamic interactions.

Behavioral models, such as the Vicsek alignment
model [24], are widely used to model how indi-
viduals interact in a group. They offer a computa-
tionally efficient framework for simulating collect-
ive behavior in sizable groups. These models and
their variants typically incorporate zones of attrac-
tion, avoidance, and alignment to describe how
individual interactions depend on spatial distribu-
tion. The Vicsek model reproduces three stereotyp-
ical behaviors observed in fish schools: swarming,
milling, and schooling [25, 26]. These behaviors are
distinguished by varying degrees of polarization and
rotational order, providing insights into the mechan-
isms underlying collective intelligence in fish groups.
Tunstrem et al further demonstrated that both group
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size and domain boundaries significantly influence
the emergent dynamics of schools [27].

Although schooling dynamics primarily depend
on social and sensory mechanisms [25, 28, 29],
hydrodynamic effects significantly influence both
the interactions and their collective outcomes [30].
Recent studies have combined behavioral models
with hydrodynamic interactions to examine collect-
ive behavior in fish groups [30-32]. These modeling
approaches capture behavioral transitions similar to
those observed in the Vicsek model while also con-
sidering boundary effects, group size, social interac-
tions between individuals, and flow-mediated inter-
actions. The aforementioned studies focus on two-
dimensional schools with two-dimensional hydro-
dynamic interactions. While the precise effects of
three-dimensionality on group cohesion and stability
are unknown, they undoubtedly differ from the two-
dimensional case since individual swimmers would
not be constrained to planar configurations, and the
strength and structure of three-dimensional hydro-
dynamic interactions differ from two-dimensional
interactions.

In previous work, we took a step towards
understanding the effects of three-dimensionality
by examining the fundamental three-dimensional
hydrodynamic interactions between a pair of swim-
mers [33]. Pairwise interactions serve as a building
block for interactions between a larger number of
individuals. We found that passive hydrodynamic
interactions alone can lead to cohesive pairs of swim-
mers when their initial configurations are sufficiently
well aligned.

In this work, we examine emergent group dynam-
ics arising from three-dimensional hydrodynamic
interactions in larger swimmer populations, using
the inviscid, far-field model developed in [33].
The reduced-order modeling approach accounts for
essential hydrodynamic coupling between swimmers,
neglecting the vortical wake produced by swimmers
in order to determine the role that potential flow
interactions play on group dynamics. By restricting
ourselves to potential flow, we may discern the funda-
mental mechanisms of schooling dynamics. Further
details about the choice of the model are provided in
the ensuing section. Social and other interactions are
not accounted for, allowing us to probe purely hydro-
dynamic effects and examine to what degree cohesion
can emerge from passive hydrodynamic interactions.
The study focuses on initially symmetric configur-
ations to determine whether these symmetries per-
sist in the resulting dynamics—a characteristic that
can influence group cohesion and promote stable
collective motion. Under these idealized conditions,
we find that far-field interactions alone significantly
impact the cohesion of groups of swimmers. This is an
important result because, contrary to common belief,
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it shows that interactions with a vortical wake do not
solely determine the cohesion of groups of swimmers.

The paper is structured as follows. Section 2
reviews the modeling framework and derives the gov-
erning dynamical system. Following that, the free-
swimming dynamics of several fundamental config-
urations of swimmers are explored: triangular con-
figurations in section 3, diamond configurations in
section 4, and circular configurations in section 5. A
summary and concluding remarks are presented in
section 6.

2. Model formulation

Perhaps the most important decision we are faced
with is which approach to use to study the group
dynamics arising from hydrodynamic interactions. To
inform our choice, we turn to real schools of fish. Two
characteristics of real schools stand out: they adopt
three-dimensional formations [34], and they can be
incredibly large, with schools with a million mem-
bers not uncommon [35]. Although we will restrict
ourselves to schools of modest sizes in this work, we
ultimately aim to build towards very large schools.
Accordingly, we demand that our approach be able to
capture three-dimensional interactions for such large
schools.

These requirements severely restrict the set of
feasible approaches. Experiments cannot fulfill our
requirements at cost, nor can high-fidelity simula-
tions. Even an unsteady panel method would quickly
become prohibitively expensive for very large schools,
as the number of computational flow elements grows
linearly with time. Instead, we must turn to a simpli-
fied model. For this purpose, in our previous work,
we developed a three-dimensional, inviscid, far-field
model of a swimmer [33]. The model is inspired by
the two-dimensional model developed in [36, 37]. It
avoids the cost of other approaches by only consid-
ering the inviscid far-field flow induced by a swim-
mer, ignoring the vortical wake that it produces. More
details follow below.

Before proceeding to the technical details of the
model, we emphasize that the simplification made
by our model is a strategic strength, as it allows one
to explore the very interesting space of very large
groups of inertia-dominated swimmers. Inevitably,
every model system makes tradeoffs between dif-
ferent aspects. We have traded off complexity of
the hydrodynamics for access to three-dimensionality
and scale, which we argue are fundamental aspects
of fish schools. These two fundamental aspects can-
not be accessed by other means. Most prior work has
sacrificed three-dimensionality and scale for access
to higher-complexity hydrodynamics. Of course, real
swimmers do produce vortical wakes. We aim not to
dismiss the importance of interactions with the wake,
but rather to shed light on inviscid far-field effects.
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n;

Figure 1. Representation of a swimmer modeled as source
dipole.

The differing approaches are complementary, as each
one brings insights to an aspect of the schooling prob-
lem that the other cannot touch.

We proceed by reviewing the essential features of
the far-field swimmer model, the details of which can
be foundin [33]. Each swimmer is modeled as a three-
dimensional source-sink pair of equal strength separ-
ated by a fixed distance ¢ (see figure 1), producing a
dipole flow at large distances. Physically, the source
represents the fore of the swimmer, where fluid is
expelled in all directions as the swimmer advances,
while the sink represents the rear, where fluid is drawn
in to fill the void left behind. This model is based
on the fact that the potential flow induced by a body
of constant volume can be expressed as a multipole
expansion in which the leading-order term is a dipole
[38, chapter 4.7].

Outside vortical regions and away from bound-
ary layers, the flow is irrotational, justifying the use of
a potential flow model. The dipole term in the mul-
tipole expansion is a universal feature of swimmers,
independent of their specific shape and kinematics—
details that are instead encoded in higher-order terms.
A comparison of the induced flow to that of a simu-
lated tuna can be found in [33]. Our model provides
a computationally tractable way to calculate the flow
induced by a swimmer, with broad applicability to
inertial swimmers, regardless of their shape charac-
teristics, enabling the study of inviscid mechanisms
in groups of swimmers.

In isolation, our model swimmer moves at a speed
U= Zn along the direction of its body, where o >
0 is the volumetric flow rate of the source/sink. We
call U the self-propelled speed. When more than one
swimmer is present, they mutually affect each other’s
motions through the velocity fields they induce; that
is, through their hydrodynamic interactions.

To determine the hydrodynamic interactions, we
treat each swimmer as a dumbbell comprising two
beads connected by a rigid rod, the beads respect-
ively co-located with the source and sink. Such dumb-
bell representations are common in the microswim-
mer literature [39—43]. In this representation, all the
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hydrodynamic forces experienced by the swimmer are
concentrated on the beads, and the rigid rod serves
to keep the length of the dumbbell fixed. Using the
results developed in [44] for the force on a sphere in
an unsteady inviscid flow, and assuming the bead is
neutrally buoyant—a reasonable assumption in the
context of swimming—it can be shown that the bead
moves as a material point [33]. Thus, for each swim-
mer, we take the velocity of the source (sink) to be
equal to the sum of the self-propelled velocity and the
velocity induced by the sources and sinks of all other
swimmers. A small modification must be made to the
velocity of each bead in order to ensure that the length
of the dumbbell is constant in time, which is discussed
in the ensuing text.

In this work, we consider a system of N identical
swimmers. We denote by x¢; and x;; the position
vectors of the source and sink of the ith swimmer,
respectively (figure 1). Let x. ; be the center position
and n; the orientation vector pointing from the sink
to the source. We can express x¢; and x; ; in terms of
of x. ;, n;, and £:

1

X[ =X+ Eéni, (1a)
1

Xp,i = X¢i — Eén,‘. (lb)

Each swimmer is thus described by six variables: three
for the center coordinates and three for the orienta-
tion vector. (If desired, the orientation can instead be
described by two angular variables).

The translational and rotational dynamics of each
swimmer are given by

dx,; 1
:i(t’ =3 (Vi +vb,i) (2)
S
% =7 (Vi — Vi, +2\im;)
1
=7 {vii—=voi— [(vi —vpi) -mi]mi }. (3)

Above, vy; and vy ; respectively correspond to the
unconstrained velocities of the source and sink of the
ith swimmer due to the self-propelled velocity and the
interactions with other swimmers, given by

N
Xfr; — Xf4 Xr:— Xp, ;
vy = Un; +UZ< fi X X T Xbjj 3) 7

A=\ s =gl [ — X

j#i

(4a)

N
o Xp,i — Xf,j Xp,i —Xp,j
Vb,i:Uni"v‘MZ( i f]3_ i J3>.
=0 b =5 [l =,
i
(4b)
The Lagrange multiplier \; in equation (3) ensures
the constraint % =0 is satisfied for all swimmers,
maintaining the constant distance between the source
and sink during motion. It originates from a force that
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acts on the source and the sink to either push them
toward each other or pull them apart, as needed. This
force does not produce any net translation or rota-
tion of the ith swimmer, nor does it directly affect the
hydrodynamic interactions between swimmers. For
more details, see [33].

We concatenate the position and orientation vec-
tors of all swimmers into a single state vector X of
dimension 6N. The state of the system is evolved
forward in time numerically using the fourth-order
Runge—Kutta method. At each step, we re-normalize
the orientation vectors n; to ensure they have unit
length during the simulation. For all the results shown
in this work, lengths have been normalized by /, velo-
cities by U, and time by £/U.

3. Triangular configurations

We start by investigating the simplest groups with
N > 2: triangular configurations of swimmers. Five
parameters are required to describe the state of our
model swimmer: three for its center position and two
for its orientation. It therefore seems that 15 paramet-
ers are required to describe the state of a trio. The
required number of parameters can be reduced to
nine by leveraging the continuous translational and
rotational symmetries of the system. Even with this
reduction, it is infeasible to characterize the dynam-
ics of a trio in such a large parameter space.

We therefore focus on a reduced set of configura-
tions that are of the leader-follower type, as sketched
in figure 2. Without loss of generality, we fix one
swimmer at the origin and orient it in the positive
y-direction. By making the other two swimmers co-
planar with the first and imposing mirror symmetry
about the y-axis, the configuration of the trio simpli-
fies to being described by two separation parameters,
Ax and Ay, and a relative angle between the sym-
metric pair, Af. Due to the mirror symmetry, we
need only consider initial configurations with Ax >
0. When Ay > 0, the trio is arranged as one leader
and two followers (which we will also refer to as trail-
ing swimmers). Conversely, Ay < 0 gives two leaders
and one follower.

Owing to translational symmetry, only the sep-
arations Ax and Ay between the swimmers, not the
absolute positions, affect the dynamics. Rotational
symmetry further implies that only the relative angle
A6 between the symmetric pair influences the system,
as the central swimmer experiences no net rotation
or translation in the x-direction. The symmetric pair
can either enhance or oppose the central swimmer’s
motion along its axis, while their mirrored hydro-
dynamic fields preclude lateral motion of the central
swimmer.

Several distinct dynamical regimes emerge,
depending on the swimmers’ initial configuration.
The simplest case occurs when |Ay| — oo, where the
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Figure 2. Configuration of three swimmers with mirror
symmetry about the y-axis. One swimmer is fixed at the
origin, while the other two swimmers are positioned
symmetrically.

central swimmer moves at its self-propelled speed
and the rest of the system effectively reduces to a two-
swimmer interaction. In this limit, the two swim-
mers either end up in deadlock (for Af = —m),
collide (for small Ax), or diverge (for all other
parameter values); see [33] for details. The colli-
sion scenario is non-physical in our model since a
far-field model does not accurately model hydro-
dynamic interactions when the swimmers are too
close.

For finite Ay, it is useful to think of the symmetric
pair as being perturbed by the presence of the cent-
ral swimmer. All three swimmers now interact, and
new dynamical states emerge. We first consider the
case where Ay > 0, corresponding to one leader and
two trailing swimmers, before continuing to the case
where Ay < 0, corresponding to two leaders and one
trailing swimmer.

3.1. One leader, two trailing swimmers

For initial configurations where all three swimmers
are aligned (Af = 0), the phase diagram in figure 3
summarizes the dynamical states that result. The
swimmers either collide, diverge, or oscillate as a
cohesive group. We distinguish four regions in the
phase diagram.

Region I consists of tall and narrow configura-
tions of the trio for which the swimmers eventu-
ally diverge. The velocity field induced by the leader
pulls the trailing swimmers forward towards it, closer
towards each other, and tends to rotate them towards
each other. The velocity field induced by the trail-
ing swimmers has an opposing effect: it pushes the
leader further away, slows down the trailing swim-
mers, and rotates them away from each other. Because
of the tall and narrow configuration, the trailing
swimmers are more strongly affected by each other’s
hydrodynamic fields than the leader’s, leading them
to rotate away from each other. Furthermore, while
the trailing swimmers are pulled forward by the lone
leader, the leader is pushed forward by two trailing
swimmers, the net effect being that the leader separ-
ates from the trailing swimmers.
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A representative case is shown in figure 4(a).
The vertical separation Ay increases monotonic-
ally while the lateral separation Ax first decreases
by a very small amount, reaches a minimum, and
then increases. This is accompanied by the two
trailing swimmers rapidly rotating away from each
other, overshooting their steady-state orientations,
before gradually rotating back towards each other and
approaching their steady-state orientations, where
they face away from each other. (In order to bet-
ter illustrate the early dynamics, the configurations
shown in figure 4(a) occur before the overshoot. The
dynamics up to and after the overshoot would be
difficult to visually distinguish since the overshoot
is weak). As they rotate, their self-propelled velocity
acquires a lateral component, driving the swimmers
outward. As they further separate, the hydrodynamic
interactions weaken relative to their self-propelled
velocities. Once sufficiently separated, the swimmers
are essentially independent of each other, moving for-
ward at their self-propelled speeds, askew, continuing
to separate from each other.

Short and wide configurations also lead the swim-
mers to diverge from each other, captured by region I
in the phase diagram. For such configurations, all the
hydrodynamic interactions tend to rotate the trailing
swimmers away from each other. The velocity field
induced by the leader pulls the trailing swimmers
closer to each other. In contrast to the tall and nar-
row configurations of region I, now the trailing swim-
mers pull the leader towards them, while the leader
pushes the trailing swimmers away from it. Once
again, the combined might of the trailing swimmers
is stronger, causing the separation in the y-direction
to initially decrease. A representative case is shown
in figure 4(b). The lateral and vertical separation of
the swimmers initially decreases while the trailing
swimmers rotate outward. As they rotate, their self-
propelled velocity acquires a lateral component. This
lateral component dominates the induced velocities
from the other swimmers once they have rotated suf-
ficiently, causing the lateral separation Ax to begin
to increase. As they continue to separate laterally,
the hydrodynamic interactions weaken, and soon the
self-propelled velocity dominates the dynamics. At
this point, the swimmers move askew from each
other along nearly straight lines at their self-propelled
speeds, separating vertically and laterally at steady
rates.

Oscillatory dynamics emerge in two adjacent
regions (regions III and IV) of the phase diagram.
Representative cases are shown in figures 4(c) and (d),
respectively. In both regions, Ay increases mono-
tonically while Ax exhibits oscillatory behavior on
top of a net increase. Similarly, the relative angle
A# oscillates between positive and negative values.
Regions III and IV are distinguished by their ini-
tial rotational dynamics, with the trailing swimmers
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Figure 3. Phase diagram for Af = 0 for three swimmers, with one leader and two trailing swimmers (Ay > 0). The green curves
correspond to states of the system satisfying % -e; = 0, where e is the unit vector in the positive x-direction.
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Figure 4. Evolution of the relative separations for different initial conditions with A = 0. (a) Region I: Ax =3, Ay = 8.

(b) Region II: Ax = 8, Ay = 1. (c) Region III: Ax =7, Ay = 5. (d) Region IV: Ax = 8, Ay = 9. The arrows indicate the vector
(sin AB, cos AB), i.e. they are rotated clockwise from the vertical by Af. N.B.: the plots illustrate the trajectory of the system in
the symmetry-reduced space, not the paths taken by the swimmers.
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initially rotating inward in region III, whereas they
initially rotate outward in region IV. The boundary
between the two regions is thus given by the locus
of initial configurations for which % -e; = 0, where
e; is the unit vector in the positive x-direction. This
boundary is drawn as a solid green curve in figure 3.
The two regions are highly intertwined, however. In
figures 4(c) and (d), one can see that Af becomes zero
at the extremes of the oscillations, and (%A(‘) changes
sign from one extreme to the next. This implies that
swimmers whose initial configuration lies in region
III move to a configuration lying in region IV, and
vice versa. As a result, the swimmers oscillate between
the two regions. Physically, when the trailing swim-
mers are close (i.e. in region IV), they influence each
other more strongly than the leader does. The trail-
ing swimmers always rotate each other outward in
this region, causing their self-propelled velocities to
acquire a lateral component that moves the trailing
swimmers apart. Once the trailing swimmers are suf-
ficiently far apart, the influence of the leader becomes
relatively stronger. The leader has a tendency to rotate
the trailing swimmers inward, which overcomes the
outward rotation that the trailing swimmers induce
on each other. The trailing swimmers thus rotate
inward, reaching region III, and continue rotating to
the point where their self-propelled velocities acquire
a lateral component that moves them towards each
other. The process repeats cyclically.

The swimmers do not oscillate forever, eventu-
ally diverging. The number of oscillations that occur
before divergence depends on the initial separation
of the swimmers. We have observed anywhere from
one oscillation to over 50 oscillations complete before
the swimmers diverge. The time between oscillations
increases rapidly, in some cases increasing exponen-
tially with the number of oscillations. Since the sep-
aration between the leader and the trailing swimmers
increases with each cycle, the hydrodynamic influence
of the leader on the trailing swimmers decreases from
one cycle to the next. As a result, the ability of the
leader to rotate the trailing swimmers inward weak-
ens from one cycle to the next. Once the separation
has reached a critical value, the leader is unable to
rotate the trailing swimmers inward, and they diverge,
traveling away at their self-propelled speeds. There is
no simple relation for the critical separation since it
depends on the maximal relative angle between the
trailing swimmers during the oscillations.

In addition to the boundary separating regions III
and IV, there is another locus of configurations for
which % -e; = 0 in figure 3. This forms the bound-
ary between the configurations that lead to divergence
in region II and those that lead to oscillatory beha-
vior in region III. Such a simple criterion separating
the oscillatory configurations of region IV from the
diverging configurations of region I does not exist. In
both regions I and IV, the trailing swimmers initially
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rotate outward and then inward. In region I, how-
ever, the trailing swimmers attain a larger relative
angle Af, causing them to laterally separate at a faster
rate, which causes the hydrodynamic influence of the
leader on the trailing swimmers to decay at a faster
rate. The leader does not rotate the trailing swim-
mers inward sufficiently fast, and they diverge from
each other. This is analogous to the escape velocity
required for an object to escape the gravitational pull
of a planet.

Since the configurations in regions I and II lead
to divergence, such trios are not cohesive. While the
configurations in regions IIT and IV lead to hydro-
dynamic interactions that lock the trio into a dynam-
ically coupled state, their vertical and lateral separ-
ations increase on net, and the swimmers eventu-
ally diverge. We therefore consider regions III and IV
to give rise to semi- (or finite-time) cohesion. For
A6 # 0, the region of phase space leading to diver-
gence increases in size.

3.2. Two leaders, one trailing swimmer

The phase diagram for a trio with two leaders and one
trailing swimmer is shown in figure 5. Qualitatively,
it is very similar to the phase diagram for one leader
with two trailing swimmers: when the swimmers are
too close, they collide with each other; and when the
aspect ratio Ay/Ax of the trio is large or small, the
swimmers diverge from each other.

The primary difference between the phase dia-
grams is the emergence of a stable relative equilibrium
when there are two leaders and one trailing swimmer.
No stable state exists for the case of one leader and two
trailing swimmers. The purple circles in figure 5 show
the initial configurations of the trio (with Af = 0)
that converge to the relative equilibrium. The relat-
ive equilibrium itself and its induced velocity field are
shown in figure 6. The swimmers are configured as an
isosceles triangle, with the two leaders facing slightly
inward. The group maintains its configuration while
moving forward at a speed equal to 0.934U, slower
than the self-propelled speed of an isolated swim-
mer. A similar result was demonstrated by Tchieu et al
in [36], where a trio of counter-rotating point-vortex
pairs evolved toward a stable equilibrium in which the
pairs face each other and form an equilateral triangle.
Due to their configuration, the vortex pairs do not
move. In our case, the configuration is different, and
the group has a non-zero speed.

A key feature of the relative equilibrium is its
robustness to perturbations in Ax, Ay, and Af. The
basin of attraction of the relative equilibrium is shown
in figure 7, where configurations inside the curves
converge to the relative equilibrium. The central
swimmer, now trailing the symmetric pair, induces
the same rotational dynamics on the symmetric pair
as when it was the leader. The translational dynamics
that it induces, however, differ. Rather than drawing



10P Publishing

Bioinspir. Biomim. 20 (2025) 066005

M N Mabrouk and D Floryan

[ ==y = Y =YY =

xxx Collision
9%¢ Diverge

° Basin of
9@ attraction

Az

AXXPPOOPGO0G00000000000
-2
-4
Ay :
)
-6 °
L 4
*
L 4
-8 *
L 4
*
L 4 L 4
-10{ xxeeseee
0 2 4 6
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Figure 6. Streamlines corresponding to the relative
equilibrium. Its configuration is Ax = 2.0779,
Ay = —1.381,and Af = —0.7247.

the pair together, the central swimmer pushes them
apart when it is in the trailing position. This dif-
ference leads to the emergence of the relative equi-
librium. In the equilibrium configuration, the out-
ward rotation that the leaders induce on each other
is balanced by the inward rotation induced by the
trailing swimmer, and the lateral components of the
self-propelled velocities of the leaders are balanced
by the laterally outward push induced by the trailing
swimmer.

4. Diamond configurations

By composing triangular configurations of swim-
mers, one can create a diamond configuration. In his
seminal work, Weihs argued that by arranging them-
selves into a diamond formation, swimmers stand
to expend less energy than in isolation [15]. Since

then, diamond formations have been among the most
studied. Here, we characterize the cohesion of such a
formation.

The stability of diamond lattices of swimmers
was previously studied in [11], where it was found
that diamond formations are not passively stable.
An important distinction between that work and the
present work is how the swimmers are modeled.
While both utilize a far-field model for the swimmers,
Gazzola et al used the model of [36], wherein a swim-
mer is modeled as a planar pair of point vortices sep-
arated by a fixed distance. This produces the same far-
field flow as a two-dimensional version of our model,
but leads to qualitatively different rotational dynam-
ics due to how the velocity gradient is sampled by the
swimmer. As argued in [33], the vortex-pair model
is appropriate for short and wide swimmers, whereas
the model used in the present work is appropriate for
the more commonly encountered long and narrow
swimmers. This key difference may lead to a change
in the stability/cohesion of a diamond arrangement of
swimmers, as suggested by the results in section 3.2.

The diamond arrangement is shown in figure 8,
characterized by the spacings Ax and Ay. We examine
three representative cases with group sizes N =7, 13,
and 27 swimmers, with fixed spacings of Ax = Ay =
16, whose trajectories are shown in figure 9. All con-
figurations shown have mirror symmetry.

Several dynamical features emerge. Most obvi-
ously, the central swimmers experience neither rota-
tion nor transverse translation. This is a consequence
of being along the axis of symmetry. The other swim-
mers are symmetric about this axis. In fact, the cent-
ral axis behaves as an impermeable wall since the
mirror symmetry is equivalent to using the method
of images for potential flows. Consequently, swim-
mers do not cross the central axis. Surprisingly, the
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Figure 8. Initial configuration of N swimmers in a planar diamond lattice formation. Arrows indicate identical self-propulsion
directions, with uniform lattice spacings Ax and Ay throughout the school.

symmetry eventually breaks in figure 9(c); we will
elaborate on this observation later.

In the smallest group, the peripheral swimmers
separate into subgroups of three swimmers that oscil-
late in a braided pattern, which often happens to
pairs of swimmers [33]. The braided trios slowly

diverge from each other, and this divergence con-
tinues beyond what is plotted, though each sub-
group seems to maintain its structure. Although the
entire group remains cohesive for only a finite time,
the emergent subgroups remain cohesive for much
longer.
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Figure 9. Planar trajectories of N swimmers for different initial conditions. (a) N =7, Ax = 16, Ay = 16. (b) N =13, Ax = 16,
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The larger diamond formations initially display
similar behavior, though in stages. In figure 9(b), the
outermost swimmers (blue and pink) are the first to
form braided trios and move slightly inward. Later,
the next layer of swimmers (green and orange) organ-
ize into another set of braided trios that move inward.
The behavior is similar for the largest group of swim-
mers in figure 9(c), with the outermost swimmers
(blue and pink) forming braided quintets, followed
by the next layer (green and orange) forming another
set of braided quintets, and finally followed by the last
layer (light green and light orange) forming braided
pairs, all of which move inward. The core of the group
is able to sustain nearly straight motion for a longer
time than the periphery for the same reason that
the central swimmers maintain straight motion: they
experience opposing hydrodynamic interactions with
swimmers on either side. For example, consider the
light green swimmers just left of center in figure 9(c).

Only the five outermost pink swimmers on the right
can cause the light green swimmers to translate
laterally or rotate since every other swimmer has
an opposite with respect to the light green swim-
mers that nullifies any induced lateral translation or
rotation. Swimmers closer to the periphery experi-
ence less such cancellation of hydrodynamic inter-
actions, which is why they veer off straight paths
earlier. The blue swimmers on the left, for example,
have no leftward neighbors that can oppose the lat-
eral translation and rotation induced by their right-
ward neighbors, leading the blue swimmers to veer off
first.

Once all braided subgroups have formed from
the outside in, they begin to diverge from the inside
out. At this point, the dynamics become quite com-
plex, and interactions between subgroups emerge.
We observe that swimmers sometimes switch the
subgroup they belong to, that subgroups exchange

10
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Figure 10. Perturbed configurations and corresponding trajectories for N = 7. (a) Symmetric rotation of two swimmers.
(b) Asymmetric rotation of one swimmer. The perturbed swimmers are initially rotated 7w /48 from the vertical. The trajectories
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positions, and individual swimmers are ejected from
the group. Overall, the group begins to progressively
lose cohesion, though not in a catastrophic manner.
The eventual loss of cohesion results from a chain of
events that starts from the periphery of the group.
This suggests that the inner core of a group is pass-
ively cohesive, and the cohesion of the overall group
can be maintained by actively adjusting or controlling
the behavior of the swimmers on the periphery while
allowing the inner core of swimmers to passively
evolve.

As we remarked earlier, the largest group in
figure 9(c) loses mirror symmetry. This also happens
to the smaller group in figure 9(a) a bit bey-
ond what has been plotted. Round-off error in

our simulations breaks the mirror symmetry; once
broken, the dynamics of the system evolve the group
further away from a symmetric configuration, which
suggests that certain symmetries are not robust to
perturbations.

To qualitatively assess the robustness of the dia-
mond arrangement, we consider two types of per-
turbations for the case N =7. The first is a symmet-
ric perturbation, in which two swimmers are rotated
while preserving mirror symmetry. The second is an
asymmetric perturbation, where only one swimmer is
rotated, thereby breaking the mirror symmetry. The
perturbations and resulting trajectories are shown in
figure 10, and should be compared to the unper-
turbed trajectory in figure 9(a).

11
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For the symmetrically perturbed case, two swim-
mers are initially rotated towards each other by
7 /48, maintaining the overall mirror symmetry of the
arrangement, as illustrated in figure 10(a). The swim-
mers spread out at a faster rate than in the unper-
turbed case. Further differences arise in the struc-
ture of the subgroups, with the peripheral swimmers
forming braided pairs instead of trios. Compared to
the unperturbed case, one could say that the over-
all cohesion is somewhat lower, but the dynamics are
qualitatively quite similar.

For the asymmetrically perturbed case, one swim-
mer is initially rotated outward by /48, breaking
the mirror symmetry of the arrangement, as shown
in figure 10(b). The swimmers spread out at a faster
rate than in the unperturbed case, but at approx-
imately the same rate as in the symmetrically per-
turbed case. Subgroups emerge as before; now, the
leftmost braided trio from the unperturbed case
arises again, and a new central braided pair emerges
(though upon closer inspection, the orange swimmer
is initially entangled with the red and pink swim-
mers before finally pairing with the central yellow
swimmer).

Opverall, loss of symmetry seems to somewhat
lower the cohesion of the group. What is robust
to perturbations, however, is the emergence of sub-
groups that seem to remain cohesive throughout
their lifetimes. The emergence of the subgroups
can be explained by the existence of a large set of
cohesive configurations for groups with few indi-
viduals, as shown in section 3 and [33]. Crucially,
these sets of cohesive configurations are robust to
perturbations.

5. Circular configurations

The last set of configurations that we consider are cir-
cular configurations. They are commonly observed,
for example, in the milling motion of fish schools,
where swimmers follow one another, rotating around
an empty core [45]. Here, we investigate the role that
hydrodynamic interactions play in such configura-
tions. We first consider circular configurations for
which the motion is in the same plane as the swim-
mers, and then configurations for which the primary
motion is orthogonal to the plane containing the
swimmers.

5.1. In-plane motion

We first consider N swimmers that are uniformly dis-
tributed along the circumference of a circle of radius
R. Each swimmer is initially tangent to the circle, as
shown in figure 11, which also shows the streamlines
of the induced flow.

Since milling behavior is commonly observed in
nature, we ask whether it can arise purely from hydro-
dynamic interactions; that is, are there circular con-
figurations of swimmers that maintain their structure
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Figure 11. Spatial arrangement for swimmers in a
circular configuration. Here, N = 6, and the streamlines
of the induced flow are also shown.
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Figure 12. The radius R and swimmer speed wR as
functions of group size for hydrodynamic milling
configurations.

indefinitely? With the aid of a Jacobian-free Newton—
Krylov solver (see [46] for details), for every N €
[4,100], we find an equilibrium circular configuration
in which the swimmers chase each other around the
circle. Due to its similarity to milling, and its pass-
ive hydrodynamic nature, we refer to this behavior as
hydrodynamic milling. The behavior is slightly more
complicated than simple rotation around a circle; in
addition to rotation around the circle, the swimmers’
positions undergo small oscillations on a much faster
time scale. Dynamically speaking, the circular con-
figurations give rise to relative periodic orbits. For
the sake of simplicity, we may ignore the fast oscilla-
tions and approximate the motion as simple rotation
around a circle. The radius of the equilibrium circu-
lar configuration and the speed at which the swim-
mers move around the circle are shown as functions
of N in figure 12. The radius is a linear function of
N, implying that the separation between swimmers
remains constant as N increases. The speed of the
swimmers is also constant, or, equivalently, the angu-
lar rate of rotation of the group, w, is proportional
toR™L.
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Figure 13. Unstable modes of hydrodynamic milling for N = 10. (a) Mode 1 (asymmetric). (b) Mode 2 (conjugate to mode 1).

(c) Mode 3 (symmetric).
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Figure 14. Nonlinear evolution of hydrodynamic milling state for N = 10. The red comet tails show the trajectories taken in the
near past. (a) Hydrodynamic milling. (b) Onset of instability. (c) Splitting into subgroups.

To determine the robustness of hydrodynamic
milling, we calculate the linear stability of the asso-
ciated relative periodic orbits. The technical details
are given in the appendix. No matter the size of the
group, we find that there are always three unstable
modes: two asymmetric modes that form a conjug-
ate pair, and a purely real symmetric mode corres-
ponding to uniform rotation of the swimmers. The
unstable modes are shown in figure 13. The conjugate
pair always has a faster growth rate than the symmet-
ric mode, which is apparent in the nonlinear simula-
tion shown in figure 14. Beyond the onset of instabil-
ity, the swimmers split into subgroups before soon
colliding.

More complex circular arrangements ultimately
end with the same fate as the hydrodynamic milling
state and the diamond configurations. One such
example is shown in figure 15, where twelve swim-
mers have been initially arranged along two concent-
ric circles. The swimmers destabilize more quickly
than in the hydrodynamic milling state, ultimately

13

splitting into pairs that undergo braided motion, as
seen previously. Despite the overall group not being
cohesive, the subgroups remain cohesive for all later
times.

5.2. Out-of-plane motion

The final configuration we consider again has the
swimmers uniformly distributed along the circum-
ferences of two circles (figure 16). The circles are co-
axial, of the same size, and are offset from each other
along their mutual axis. The swimmers differ now in
that their orientations are parallel to the mutual axis
of the circles rather than tangent to the circles. As
was observed for every other configuration with many
swimmers, relatively small subgroups quickly emerge.
In this case, swimmers from one circle pair up with
their counterparts from the other circle. The pairs
undergo braided motions and remain cohesive for the
rest of time. Even for this fully three-dimensional con-
figuration and motion, the emergence of small and
cohesive subgroups remains a robust phenomenon.
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Figure 15. (a) Arrangement of two concentric circles of radii R; = 2.5 and R, = 4.0. (b) Resulting trajectories.

/
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Figure 16. (a) Swimmers arranged along two coaxial rings of radius 2.5 separated by a distance of 4. (b) Resulting trajectories.

(b)

6. Summary and conclusions

In this work, we studied the dynamics and cohesion
of freely swimming collectives. Our work was driven
by a fundamental question in collective hydrodynam-
ics: can group cohesion be sustained purely through
passive hydrodynamic interactions?

To address this question, we developed a reduced-
order potential-flow model for the three-dimensional
hydrodynamic interactions of freely moving inertial
swimmers. The model represents the far-field flow
induced by the motion of long, thin swimmers. In
isolation, a model swimmer moves along a straight

line at a constant speed. In the presence of a group,
each swimmer’s motion is modified by the flow
induced by all other swimmers, leading to highly non-
trivial dynamics.

Building on previous work in which pairwise
interactions were characterized [33], here we stud-
ied groups of N > 3 swimmers. We considered three
types of configurations that we view as elemental
building blocks of arbitrary groups: triangular, dia-
mond, and circular configurations. Under the ideal-
ized conditions of our model, we found that far-
field interactions alone significantly impact the cohe-
sion of groups of swimmers. This result shows that,
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contrary to common belief, interactions with a vor-
tical wake do not solely determine the cohesion of
groups of swimmers.

Swimmers in triangular configurations diverge
from each other if the aspect ratio of the triangle is
too large or too small. For aspect ratios centered about
unity, on the other hand, cohesive groups can emerge.
When the configuration consists of one leader and
two followers, the group is semi-cohesive in the sense
that the swimmers are hydrodynamically locked for
a finite time before eventually diverging from each
other. Flipping the configuration to two leaders and
one follower stabilizes the group: a stable equilibrium
configuration emerges, one which has a large basin
of attraction. The key factor enabling an equilibrium
configuration is that the torques the swimmers induce
on each other balance, leading to stable rotational
dynamics.

For larger groups, cohesion is more difficult to
maintain. For diamond configurations, subgroups
quickly form at the periphery of the group, and
then progressively develop inward into the core.
Destabilization occurs first at the periphery because
of the asymmetric hydrodynamic interactions exper-
ienced by peripheral swimmers, whereas the core
is relatively stable due to cancellation of symmet-
ric hydrodynamic interactions. The same principle
seems to be at play in higher-fidelity simulations
of tethered swimmers, with peripheral swimmers
experiencing highly asymmetric pressure distribu-
tions that conceivably produce a net torque and lat-
eral force [47]. Eventually, in our simulations, the
entire group splits into subgroups that tend to diverge
from each other. Despite the loss of cohesion of the
overall group, the subgroups that emerge tend to be
cohesive and maintain their structure indefinitely.
Additionally, our results are suggestive of how the
cohesion of the entire group could be maintained.
The ultimate loss of cohesion of the group is precipit-
ated by the changing dynamics of the swimmers at the
group’s edge, while the core is initially stable. The core
destabilizes slowly as the destabilization at the edge
diffuses inward. We posit that if the swimmers at the
edge are actively controlled, then the core of the group
will remain stable under passive dynamics.

Similar observations are made for circular config-
urations of swimmers. Interestingly, we discover the
existence of hydrodynamic milling states—circular
configurations of swimmers that chase each other
around a circle while traveling at constant speed.
These states reproduce the milling behavior observed
in fish schools, though purely through passive hydro-
dynamic interactions. From the dynamical point of
view, the hydrodynamic milling states are relative
periodic orbits, and we find that they are always
unstable to three modes of instability. The instabilit-
ies cause the group to devolve into smaller subgroups
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that are cohesive, similar to the diamond configura-
tion. Qualitatively similar behavior arises for groups
built from multiple circular configurations of swim-
mers: the overall group is not cohesive, but small
cohesive subgroups emerge.

Returning to our original question of whether
group cohesion can be sustained purely through pass-
ive hydrodynamic interactions, our results suggest a
negative answer. However, there is hope that cohesion
can be maintained without resorting to actively con-
trolling every swimmer in the group. Since cohesive
subgroups consistently emerge from larger groups,
one would only have to control the interactions
between subgroups, rather than between all individu-
als, to create a larger cohesive group. Furthermore,
groups seem to progressively destabilize from their
periphery inward. If the edge of the group can be con-
trolled, there is hope that the core will remain pass-
ively stable. Such a strategy is successfully employed
by shepherds and farmers who use dogs to herd live-
stock; perhaps a similar strategy is possible in aquatic
environments as well.

This work was supported by the University of
Houston Grants to Enhance and Advance Research
Program, 00018 9684.
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Appendix. Linear stability analysis of
hydrodynamic milling

Let X € RN be the state of the system, as described
at the end of section 2. The relative periodic orbits
that correspond to hydrodynamic milling are periodic
orbits in a frame of reference that rotates with the
average rate of rotation of the group. Let X, () denote
the periodic orbit in the rotating frame of reference,
so that X, () = X,,(t+ T), with T the period. One can
determine the linear stability of the periodic orbit by
performing a Floquet analysis.

Alternatively, one may define a Poincaré section,
and a point p along the periodic orbit will be a fixed
point of the associated Poincaré map ¢: ¢(p) = p.
The linear stability of the periodic orbit is equivalent
to the linear stability of p under the discrete dynam-
ics of the Poincaré map. We follow this alternative
approach.

To determine the stability of the relative periodic
orbit, we require the eigenvalues of the Jacobian of
¢ evaluated at p. We estimate the eigenvalues and
corresponding eigenvectors using the Arnoldi itera-
tion [48]. The Arnoldi iteration requires the ability to
evaluate the product of the Jacobian with any vector.



10P Publishing

Bioinspir. Biomim. 20 (2025) 066005

We may estimate such products by using the Taylor
expansion of ¢, which yields

¢ (p+eX)~ ¢ (p)+cVe(p)X = Vo(p)X

~ ¢(p+gi) _¢(P), e< 1. (Al)

Thus, the Jacobian-vector product V¢(p)X can be
approximated by simply evaluating ¢. By definition,
o(p) =p. To get ¢(p +eX), we perturb p on the
Poincaré section by £X and use our nonlinear solver
to evolve the solver forward in time until the state
intersects the Poincaré section.
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