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Drag reduction due to spatial thermal
modulations
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It is demonstrated that a significant drag reduction for pressure-driven flows can
be realized by applying spatially distributed heating. The heating creates separation
bubbles that separate the stream from the bounding walls and, at the same time,
alter the distribution of the Reynolds stress, thereby providing a propulsive force.
The strength of this effect is of practical interest for heating with wavenumbers
α = O(1) and for flows with small Reynolds numbers and, thus, it is of potential
interest for applications in micro-channels. Explicit results given for a very simple
sinusoidal heating demonstrate that the drag-reducing effect increases proportionally
to the second power of the heating intensity. This increase saturates if the heating
becomes too intense. Drag reduction decreases as α4 when the heating wavenumber
becomes too small, and as α−7 when the heating wavenumber becomes too large;
this decrease is due to the reduction in the magnitude of the Reynolds stress. The
drag reduction can reach up to 87 % for the heating intensities of interest and heating
patterns corresponding to the most effective heating wavenumber.

Key words: drag reduction, flow control, low-Reynolds-number flows

1. Introduction
The reduction of drag associated with flows through channels is of practical

importance, especially in the case of micro-channels where the required pressure
drop may lead to significant forces acting on the bounding walls, resulting in structural
problems. There are three mechanisms that contribute to the drag formation: the shear
drag, the pressure form drag and the pressure interaction drag (Mohammadi & Floryan
2012). We shall focus this discussion on the reduction of the shear drag, with the tacit
assumption that any increase of the pressure drag that may occur as a result of the
shear-reducing efforts is negligible.

Four methods for shear reduction are available. The first relies on the so-
called superhydrophobic effect (Rothstein 2010) and results from a combination
of the hydrophobicity of the surface material and surface topography. When a
superhydrophobic surface is submerged in a liquid, gas bubbles become trapped in
surface micro-pores, effectively reducing the shear stress experienced by the liquid, as
shear between the liquid and the solid is replaced by shear between the liquid and the
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gas. Most of the available data relate to motion of water with bubbles of air forming
in surface pores, with the research being inspired by the unique water-repellent
properties of the lotus leaf (Barthlott & Neinhuis 1977). The drag-reducing ability
can be increased by correct shaping of the surface pores/roughness (Samaha, Tafreshi
& Gad-el-Hak 2011) and by increasing hydrophobicity through changes in surface
chemistry (Gao & McCarthy 2006; Quéré 2008; Reyssat, Yeomans & Quéré 2008; Xi
et al. 2008; Zhou et al. 2011). The laminar drag reduction due to superhydrophobic
effects has been demonstrated both theoretically and experimentally (Ou, Perot &
Rothstein 2004; Ou & Rothstein 2005; Joseph et al. 2006; Truesdell et al. 2006).
Recent results point to the potential for drag reduction in turbulent flows (Daniello,
Waterhouse & Rothstein 2009; Martell, Perot & Rothstein 2009).

The superhydrophobic effect requires the presence of two immiscible fluids,
typically two phases, as shear between the main fluid and the bounding wall is
replaced by shear between the main fluid and the less viscous secondary fluid. The
superhydrophobic effect does not exist in the case of gas flows. The contributions of
various forms of pressure drag to the overall drag of superhydrophobic surfaces is not
known.

The second potential drag-reducing effect is associated with the rearrangement of
the bulk flow through properly structured surface grooves (Mohammadi & Floryan
2011). The overall shear decreases in spite of an increase of the wetted area. The third
effect is related to the use of extremely thin grooves with friction decreasing the flow
velocity inside such grooves and, thus, reducing the shear to which the bounding wall
is exposed (Mohammadi & Floryan 2011). Again, the overall shear decreases in spite
of an increase of the wetted area. The fourth effect is associated with grooves specially
structured for the creation of small separation bubbles where the fluid slows down,
exposing the bounding wall to a reduced shear (Mohammadi & Floryan 2011). The
last three effects are active in single-fluid systems.

The common characteristic of all of the methods described above is the use of
special surface topography that leads to the formation of the desired flow structures.
The purpose of this work is to demonstrate the existence of a drag-reducing effect that
is independent of surface topography. This effect is created by an externally imposed
spatially modulated heating. The correct pattern of heating–cooling creates a field
of buoyancy force that leads to the formation of separation bubbles that isolate the
main stream from direct contact with the bounding walls and, in this way, reduces
shear. This effect, which had been referred to as the superthermohydrophobic effect
(Floryan 2012), remains effective for very small Reynolds numbers, since stronger
flows wash the separation bubbles away, and, thus, it is of interest for applications in
micro-channels. All the results presented are for the Prandtl number Pr = 0.71 (air) to
demonstrate the level of drag reduction that can be achieved in gases.

The mechanics of the drag-reducing effect is described using a simple model
problem discussed in § 2. The solution method is described in § 3. Flow patterns are
discussed in § 4. Pressure losses are analysed in § 5. The mechanics of drag reduction
are discussed in § 6. Section 7 provides a short summary of the main conclusions.

2. Problem formulation
Consider steady flow of fluid confined in a channel bounded by two parallel walls

extending to ±∞ in the x-direction and placed at a distance 2h apart with the
gravitational acceleration g acting in the negative y-direction, as shown in figure 1.
The flow is driven in the positive x-direction by a pressure gradient. The fluid is
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gu0(y)

FIGURE 1. Sketch of the system configuration.

incompressible and Newtonian with thermal conductivity k, specific heat c, thermal
diffusivity κ = k/ρc, kinematic viscosity ν, dynamic viscosity µ, thermal expansion
coefficient Γ and variations of the density ρ that follow the Boussinesq approximation.
The lower wall is subject to periodic heating resulting in wall temperatures in the form

θL(x)= cos(αx)/2, θU(x)= 0, (2.1)

where θ denotes the relative temperature scaled with the amplitude of the peak-to-peak
temperature variations along the lower wall Td, i.e. θ = (T − TU)/Td, T denotes the
absolute temperature, λ = 2π/α is the wavelength of the heating, subscripts L and U
refer to the lower and upper walls, respectively, and the channel half-height h has been
used as the length scale.

The velocity and pressure fields in the absence of the heating have the form

v0(x, y)= [u0(y), 0] = [1− y2, 0], p0(x, y)=−2x/Re (2.2)

where v0 = (u0, v0) denotes the velocity vector scaled with the maximum of the
x-velocity Umax , p0 stands for the pressure scaled with ρU2

max and the Reynolds number
is defined as Re= Umaxh/ν.

The applied heating produces flow modifications that can be represented in the form

u2(x, y)= Reu0(y)+ u1(x, y), v2(x, y)= v1(x, y), (2.3a)

θ2(x, y)= Pr−1 θ0(x, y)+ θ1(x, y), p2(x, y)= Re2p0(x)+ p1(x, y). (2.3b)

In the above, (u2, v2), p2 and θ2 denote the complete velocity, pressure and temperature
fields, respectively, (u1, v1) and p1 denote the velocity and pressure modifications
created by the heating, respectively, θ0 stands for the conductive temperature field
and θ1 denotes deviations from the conductive temperature field induced by the
fluid motion. The complete velocity vector and the velocity modifications have been
scaled using the convective velocity scale Uv = ν/h where Umax/Uv = Re, the pressure
modifications have been scaled using ρU2

v , and Tv = Tdν/κ has been used as the
convective temperature scale, where Tv/Td = Pr defines the Prandtl number. The
maximum of θ2 in this scaling is always (2Pr)−1. The conductive temperature field
θ0 has the form

θ0(x, y)= θ (1)0 (y)eiαx + θ (−1)
0 (y)e−iαx,

θ
(1)
0 (y)= [− sinh(αy)/ sinh(α)+ cosh(αy)/ cosh(α)]/8,

}
(2.4)
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where θ
(−1)
0 is the complex conjugate of θ (1)0 . The field equations for the flow and

temperature modifications have the form

(Reu0 + u1)
∂u1

∂x
+ Rev1

du0

dy
+ v1

∂u1

∂y
=−∂p1

∂x
+∇2u1, (2.5a)

(Re u0 + u1)
∂v1

∂x
+ v1

∂v1

∂y
=−∂p1

∂y
+∇2v1 + Rapθ1 + RapPr

−1θ0, (2.5b)

Pr

(
(Reu0 + u1)

∂θ1

∂x
+ v1

∂θ1

∂y

)
+ (Reu0 + u1)

∂θ0

∂x
+ v1

∂θ0

∂y
=∇2θ1, (2.5c)

∂u1

∂x
+ ∂v1

∂y
= 0, (2.5d)

where Rap = gΓ h3Td/νκ is the Rayleigh number that measures the intensity of the
heating and ∇2 denotes the Laplace operator. The limit of Re→ 0 corresponds to pure
convection. An increase of Re leads to modifications of convection by the imposed
flow. The main interest is in the determination of the aperiodic part of the pressure
modification p1 as it provides information about the flow losses induced by the heating.
The physical problem is posed as the question of finding the additional pressure
gradient that is required in order to maintain the same flow rate in the heated and
isothermal channels. The solution must therefore satisfy the flow rate constraint in the
form

Q=
∫ 1

−1
u2 dy=

∫ 1

−1
(Re u0 + u1) dy= 4Re /3. (2.6)

Elimination of the imposed flow corresponds to the limit Re→ 0. Elimination of the
heating corresponds to the limit Rap→ 0 which results in u1 = v1 = p1 = θ1 = 0 with
the flow field being described by (2.2).

The problem formulation is closed by specifying the no-slip, the no-penetration and
the thermal boundary conditions in the form

u1(±1)= 0, v1(±1)= 0, θ1(±1)= 0. (2.7)

Solution of (2.5)–(2.7) results in the simultaneous determination of the velocity and
temperature fields, followed by the determination of the pressure field including the
mean pressure gradient, which is of main interest.

3. Method of solution
We define the stream function ψ(x, y) in the usual manner, i.e. u1 = ∂ψ/∂y,

v1 =−∂ψ/∂x and eliminate pressure, bringing the governing equations to the form

Re u0
∂

∂x
(∇2ψ)− Re

d2u0

dy2

∂ψ

∂x
+ Nψ =∇4ψ − Rap

∂θ1

∂x
− RapPr

−1 ∂θ0

∂x
, (3.1a)

Pr Re u0
∂θ1

∂x
+ Pr Nθ1 + Re u0

∂θ0

∂x
+ Nθ0 =∇2θ1, (3.1b)

where ∇4 denotes the biharmonic operator, the nonlinear terms are written in the
conservative form, i.e.

Nψ = ∂

∂y

(
∂

∂x
〈u1u1〉 + ∂

∂y
〈u1v1〉

)
− ∂

∂x

(
∂

∂x
〈u1v1〉 + ∂

∂y
〈v1v1〉

)
, (3.2a)
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Nθ1 = ∂

∂x
〈u1θ1〉 + ∂

∂y
〈v1θ1〉, Nθ0 = ∂

∂x
〈u1θ0〉 + ∂

∂y
〈v1θ0〉, (3.2b)

and 〈· · ·〉 denotes products. The solution is assumed to be in the form of Fourier
expansions

ψ(x, y)=
n=+∞∑
n=−∞

ϕ(n)(y) einαx, θ1(x, y)=
n=+∞∑
n=−∞

φ(n)(y) einαx, (3.3a,b)

u1(x, y)=
n=+∞∑
n=−∞

u(n)1 (y) einαx, v1(x, y)=
n=+∞∑
n=−∞

v
(n)
1 (y) einαx, (3.3c,d)

p1(x, y)= Ax+
n=+∞∑
n=−∞

p(n)1 (y) einαx (3.3e)

where u(n)1 = Dϕ(n), v(n)1 = −inαϕ(n), ϕ(n) = ϕ(−n)∗, u(n)1 = u(−n)∗
1 , v(n)1 = v(−n)∗

1 , p(n)1 =
p(−n)∗

1 , ∗ denotes the complex conjugate, and A stands for the streamwise pressure-
gradient correction induced by the heating. Positive values of A correspond to drag
reduction. The products are expressed using Fourier expansions in the form

〈u1u1〉 =
n=+∞∑
n=−∞
〈u1u1〉(n)(y) einαx, 〈u1v1〉 =

n=+∞∑
n=−∞
〈u1v1〉(n)(y) einαx,

〈v1v1〉 =
n=+∞∑
n=−∞
〈v1v1〉(n)(y) einαx,

 (3.3f )

〈u1θ1〉 =
n=+∞∑
n=−∞
〈u1θ1〉(n)(y) einαx, 〈v1θ1〉 =

n=+∞∑
n=−∞
〈v1θ1〉(n)(y) einαx,

〈u1θ0〉 =
n=+∞∑
n=−∞
〈u1θ0〉(n)(y) einαx.

 (3.3g)

Substitution of (3.3) into (3.1) and separation of Fourier components result in a system
of ordinary differential equations for the modal functions for −∞ < n <∞ in the
form

D2
nϕ

(n) − inα Re (u0Dn − d2u0/dy2)ϕ(n) − inα Rapφ
(n) = inα Rap Pr

−1θ
(n)
0 + N(n)

ψ ,

(3.4a)
Dnφ

(n) − inα Pr Re u0φ
(n) = inα Re u0 θ

(n)
0 + N(n)

θ0 + Pr N(n)
θ1 (3.4b)

where

D= d/dy,D2 = d2/dy2, Dn = D2 − n2α2,

N(n)
θ0 = inα〈u1θ0〉(n) + D〈v1θ0〉(n), N(n)

θ1 = inα 〈u1θ1〉(n) + D〈v1θ1〉(n),
N(n)
ψ = inαD〈u1u1〉(n) + D2〈u1v1〉(n) + in2α2〈u1v1〉(n) − inαD〈v1v1〉(n).

 (3.5)

The required boundary conditions for the modal functions have the form

Dϕ(n)(±1)= 0, ϕ(n)(±1)= 0, φ(n)(±1)= 0 for −∞< n<+∞. (3.6a–c)

System (3.4) together with the boundary and constraint conditions (3.6a–c) need to be
solved numerically.
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Drag reduction due to spatial thermal modulations 403

For the purpose of numerical solution, expansions (3.3) have been truncated after
NM terms. The discretization method uses the Chebyshev collocation technique based
on NT collocation points. The resulting nonlinear algebraic system of equations
is solved using an iterative technique combined with under-relaxation in the form
Φj+1 = Φj + RF(Φcomp − Φj) where Φ = {ϕ(n), φ(n)} is the vector of unknowns, Φcomp

denotes the current solution, Φj denotes the previous solution, Φj+1 stands for the
accepted value of the next iteration and RF denotes the relaxation factor. The solution
process starts with solution of (3.4) with the nonlinear terms on the right-hand side
assumed to be zero; the first approximation of the nonlinear terms is computed on
the basis of the available approximation of the velocity and temperature fields and
the system (3.4) is resolved with the new approximation of the nonlinear terms used
on the right-hand side. This process is continued until a convergence criterion in the
form max(|Φcomp − Φj|) < TOL is satisfied where TOL denotes the specified error. The
number of collocation points and the number of Fourier modes used in the solution
were selected through numerical experiments so that the flow quantities of interest
were determined with at least six-digit accuracy. Typically NT = 50 provided sufficient
accuracy. The required value of NM strongly depends on α, Re and Ra and can be as
large as NM = 50.

The evaluation of the nonlinear terms requires evaluation of products of two Fourier
series. It is more efficient to evaluate these product in the physical rather than in
the Fourier space. The required quantities were computed in the physical space on
a suitable grid based on the collocation points in the y-direction and a uniformly
distributed set of points in the x-direction, and the relevant products were evaluated.
The fast Fourier transform (FFT) algorithm was used to express these products in
terms of Fourier expansions (3.3f,g). The aliasing error was controlled using a discrete
FFT transform with Np rather than NM points, where Np > 3NM/2.

The pressure field has been computed from the momentum equation. Insertion of
(3.3) into (2.5a) and separation of Fourier modes leads to

p(n)1 =
1

i nα

[
(D2 − n2α2 − inα Re u0)Dϕ(n) + inα Re

du0

dy
ϕ(n)

− inα 〈u1u1〉 − D〈u1v1〉
]

for n 6= 0, (3.7a)

A= D3ϕ(0) − D〈u1v1〉(0) for n= 0. (3.7b)

Equation (3.7b) has been used for determination of the additional pressure gradient
A required to maintain the same flow in the heated channel as in the unheated one.
Equation (3.7a) has been used to compute p(n)1 , n 6= 0. The y-momentum equation has
been used for determination of p(0)1 ; substitution of (3.3) into (2.5b), extraction of
mode zero and integration between the two walls results in

p(0)1 = Rap

∫ y

−1
φ(0) dy− 〈v1v1〉(0) + constant. (3.8)

4. Flow patterns
The flow pattern created by the heating in the absence of any net horizontal flow

(Re = 0) is shown in figure 2(a). The flow topology is made up of pairs of counter-
rotating rolls with the fluid moving upwards above the hot spots and is referred to
as the type 1 topology. The corresponding temperature field illustrated in figure 2(b)
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temperature θ(x, y) = Pr−1θ0(x, y) + θ1(x, y) (b) are normalized with their maxima where
ψmax = 12.78 and θmax = (2Pr)−1.
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FIGURE 3. Flow topology of type 2. Flow (a) and temperature (b) patterns for Re = 1.
ψmax = 13.34. Other conditions as in figure 2. The dash–dot line identifies centre of the flow
tube.

illustrates the formation of vertical plumes of heated fluid above the hot spots with
cooled fluid confined to small regions above the cold spots. Introduction of a weak
flow (Re = 1) results in the formation of a continuous streamtube directed from
left to right which converts rolls into distinct separation bubbles (see figure 3a).
The streamtube follows an upward direction above the hot spots and a downward
direction above the cold spots and, as a result, rolls that were on the right-hand
side of the hot spots morph into bubbles attached to the lower wall while rolls from
the left-hand side morph into bubbles attached to the upper wall. This flow pattern
with separation bubbles at the lower and upper walls is referred to as the type 2
topology. The associated temperature field illustrated in figure 3(b) is nearly identical
to that found when Re = 0 (compare figures 2b and 3b). Increase of the strength
of the horizontal flow to Re = 10 increases the size of the streamtube and decreases
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FIGURE 4. Flow (a) and temperature (b) patterns for Re= 10. ψmax = 14.887. Other
conditions as in figure 2. The resulting flow topology is of type 2.
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FIGURE 5. Flow topology of type 3. Flow (a) and temperature (b) patterns for Re= 20.
ψmax = 26.667. Other conditions as in figure 2.

the size of the separation bubbles (figure 4a). The thermal plumes become tilted in
the streamwise direction while the magnitude of temperature variations remains very
similar to that found for smaller Re (figure 4b). Further increase of the flow strength
to Re = 20 results in the upper separation bubbles being washed away (figure 5a)
leading to the type 3 topology. The tilting of the plumes in the streamwise direction
is more pronounced and the fluid cools down in the upper section of the channel
(figure 5b). Increase of the flow strength to Re = 100 washes away all separation
bubbles (figure 6a) resulting in the type 4 topology. Plumes are strongly tilted in the
streamwise direction and meaningful changes of the temperature are confined to a
thin layer along the lower wall (figure 6b). Two additional topologies may appear but
only in the case of intense and fairly short-wavelength heating. Figure 7(a) illustrates
topology of type 5 which includes separation bubbles at the lower wall as well as
in-flow bubbles of trapped fluid which split the stream into two sections, one moving
above the in-flow bubbles and one below. Topology of type 6 (figure 8a) consists of
separation bubbles at both walls as well as in-flow bubbles. In both cases fluid trapped
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FIGURE 6. Flow topology of type 4. Flow (a) and temperature (b) patterns for Re= 100.
ψmax = 133.33. Other conditions as in figure 2.
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FIGURE 7. Flow topology of type 5. Flow (a) and temperature (b) patterns for Re= 1,
α = 5,Rap = 3500. ψmax = 1.365. Other conditions as in figure 2.

in the in-flow bubbles is almost isothermal and temperature variations in the upper
section of the channel are marginal (see figures 7b and 8b).

Conditions leading to the appearance of various topologies are illustrated in figure 9
for Re = 1. Type 4 prevails for weak heating. Increase of Rap leads to formation of
type 3 with the short-wavelength heating requiring higher Rap compared with the long-
wavelength heating. Type 2 requires still more intense heating and can be generated
only by the long-wavelength heating with α < ∼4 in the range of Rap considered.
Types 5 and 6 require heating that is almost two orders of magnitude higher than type
3 and can only be generated by the short-wavelength heating. Figure 10 illustrates how
heating has to be changed as Re increases. In the case of type 3 topology an increase
of the Reynolds number from Re = 1 to Re = 50 increases the required heating by
almost three orders of magnitude from Rap = ∼5 to Rap = ∼6000 over the whole
range of α (see figure 10a). Type 2 is more substantially affected by an increase
of Re (see figure 10b); the heating wavelengths that can produce this topology and
the required heating intensity both increase, e.g. at Re = 0.01 this topology can be
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FIGURE 8. Flow topology of type 6. Flow (a) and temperature (b) patterns for Re= 1,
α = 5,Rap = 5000. ψmax = 1.772. Other conditions as in figure 2.

2

3

4

56

102

103

5

Rap

101

104

101

FIGURE 9. Rayleigh number and heating pattern conditions required for the formation of
various flow topologies for flow with the Reynolds number Re= 1.

generated by Rap = ∼1 at α = 2, but at Re = 10 one needs Rap = ∼3000 at the
same α.

The variation of the separation bubbles with Rap and Re can be utilized in
developing various flow control strategies. Mass flow rate can be controlled by
increasing/decreasing the heating level while keeping the overall pressure drop the
same. A fraction of the fluid volume can be trapped inside separation bubbles for a
specified length of time and then removed from the channel by increasing Re; slowing
down the flow would re-create bubbles but with different fluid elements trapped inside.
The combination of heating and flow strength provides a tool for the management
of chemical reactions in micro-vessels, e.g. polymerase chain reaction amplification
of DNA (Krishnan, Ugaz & Burns 2002). The effectiveness of the process can be
increased by combining heating with appropriate surface topography.

5. Pressure losses
Pressure losses in the unheated channel are described by (2.2). Heating creates

various forms and sizes of separation bubbles and thus changes the magnitude and
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FIGURE 10. Conditions required for the formation of topologies of type 3 (a) and type 2 (b).
Separation bubbles form for the Rayleigh number Rap above each of the lines.

4 6
10

20

50
1

1

6
10

20

40

0 0.5 1.0

0

–100

100

0.5

–50

50

0 1.0

(a) (b)

FIGURE 11. Shear stress distribution at the lower (a) and upper (b) walls for the heating
wavenumber α = 2 and the Rayleigh number Rap = 2000.

distribution of the wall shear stress. The distribution of stress acting on the fluid is
illustrated in figure 11. For low values of Re the direction of the shear alternates
at the two walls, reducing the net drag when compared with the unheated channel.
Increasing Re reduces size of the separation bubbles and eventually washes them away,
eliminating the drag reducing effect. Increasing the heating intensity extends the range
of Re where the drag reduction can be realized.

The total effect is captured by the pressure-gradient correction A defined in (3.3e).
The complete mean streamwise pressure gradient can be expressed on the basis of
(2.2)–(2.3) as

∂p2

∂x

∣∣∣∣
mean

= Re(−2+ A/Re), (5.1)

and variations of A/Re are illustrated in figure 12. A significant reduction of pressure
loss is realized for small values of Re (flow topology of type 2, see figures 3 and
4). The drag reduction is remarkable when one takes into account the contorted path
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FIGURE 12. Variation of the pressure-gradient correction A/Re as a function of the heating
wavenumber α and the flow Reynolds number Re for the heating intensities Rap = 2000 (a)
and 5000 (b).
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FIGURE 13. Variation of the pressure-gradient correction A/Re as a function of the heating
wavenumber α and the Rayleigh number for the flow Reynolds number Re= 1.

followed by fluid elements, with a significant increase in the mean length of the
path, a significant reduction of the cross-sectional flow area and an increase of the
maximum of the x-velocity component above that found in the unheated case (see
figures 3 and 4). One should note, however, that motion in the separation bubbles is
partially driven by buoyancy which reduces the pressure gradient required to maintain
the axial flow.

The drag reduction strongly depends on the heating wavenumber as well as on the
heating intensity, with the maximum of A/Re ≈ 0.84 (42 % drag reduction) occurring
for α ≈ 3 with Rap = 2000 and A/Re ≈ 1.74 (87 % drag reduction) for Rap = 5000.
Figure 13 explicitly relates the drag reduction and the heating intensity. The most
effective heating pattern changes from α ≈ 1.6 for Rap ≈ 150 to α ≈ 3 for Rap = 2500
while the flow topology changes from type 4 through type 3 to type 2. The drag
reduction initially increases proportionally to Ra2

p until a saturation is reached, as
shown in figure 14. The saturation is due to the formation of the in-flow bubbles,
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FIGURE 14. Variation of the pressure-gradient correction A/Re as a function of the Rayleigh
number Rap for the heating wavenumbers α = 2 (solid lines) and α = 3 (dash–dot lines) and
the flow Reynolds number Re = 1, 5, 10, 20. Thin lines illustrate results obtained with the
weak convection assumption (see § 6).

e.g. topologies of type 5 and 6, which increase viscous dissipation and limit the
drag-reducing effect. Saturation effects are also visible in figure 12(b) for Rap = 5000.

6. Mechanics of drag reduction
It has been pointed above that the drag reduction can be explained in terms of

the reduced shear acting on the fluid at the walls, and that separation bubbles act
like ‘rollers’ partially propelled by the buoyancy force. We shall now look into
the mechanics of drag reduction and focus attention on weak convection. It is
convenient to introduce parameter ε as a measure of strength of convection. The
explicit identification of ε can be done a posteriori. It is sufficient for purposes of
this analysis to assume that ε� 1, and to represent all flow quantities as asymptotic
expansions in powers of ε, i.e.

(u1 , v1, p1, θ 1)= ε(U1,V1,P1,Θ1)+ ε2 (U2 ,V2,P2,Θ2)+ O(ε3). (6.1)

Substitution of (6.1) into (2.5) and retention of terms of the two highest orders of
magnitude lead to a system of O(ε) in the form

∇2U1 − Re u0
∂U1

∂x
− ReV1

du0

dy
− ∂P1

∂x
= 0, (6.2a)

∇2V1 − Re u0
∂V1

∂x
− ∂P1

∂y
=−RapΘ1 − Rap Pr

−1θ̂0, (6.2b)

∇2Θ1 − PrRe u0
∂Θ1

∂x
= Re u0

∂θ̂0

∂x
, (6.2c)

∂U1

∂x
+ ∂V1

∂y
= 0, (6.2d)

where θ̂0 = θ0/ε = O(1), and a system of O(ε2) of the form

∇2U2 − Re u0
∂U2

∂x
− ReV2

du0

dy
− ∂P2

∂x
= U1

∂U1

∂x
+ V1

∂U1

∂y
, (6.3a)
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∇2V2 − Re u0
∂V2

∂x
− ∂P2

∂y
=−RapΘ2 + U1

∂V1

∂x
+ V1

∂V1

∂y
, (6.3b)

∇2Θ2 − Pr Re u0
∂Θ2

∂x
= U1

∂θ̂0

∂x
+ V1

∂θ̂0

∂y
+ Pr U1

∂Θ1

∂x
+ Pr V1

∂Θ1

∂y
, (6.3c)

∂U2

∂x
+ ∂V2

∂y
= 0. (6.3d)

Both systems are supplemented by the homogeneous boundary conditions and
constraints associated with the fixed-flow-rate condition.

Since ε is undefined at this stage, (6.2) is rearranged as

∇2Θ̃1 − PrRe u0
∂Θ̃1

∂x
= Re u0

∂θ0

∂x
, (6.4)

where Θ̃1 = εΘ1. Forcing on the right-hand side of (6.4) is given by (2.4) and leads to
a solution of the form

Θ̃1(x, y)= Θ̃ (1)
1 (y)eiαx + c.c. (6.5)

where c.c. stands for the complex conjugate and Θ̃
(1)
1 comes from solution of the

following problem:

D2Θ̃
(1)
1 − (α2+iα Pr Re u0) Θ̃

(1)
1 = iα Re u0 θ

(1)
0 , Θ̃

(1)
1 (±1)= 0. (6.6)

The flow problem at the leading order of approximation is described by (6.2a,b,d).
Introduction of the stream function and elimination of the pressure result in a single
equation in the form

D4ψ − Re u0

(
∂3ψ

∂x∂y2
+ ∂

3ψ

∂x3

)
+ ReD2u0

∂ψ

∂x
= Rap

∂Θ1

∂x
+ Rap Pr

−1 ∂θ̂0

∂x
. (6.7)

The type of forcing on the right-hand side suggests a solution of the form

εψ(x, y)= ψ̃(x, y)= ϕ̃(1)(y)eiαx + c.c. (6.8)

Substitution of (2.4), (6.5) and (6.8) into (6.7) leads to

D4ϕ̃(1) − (2α2 + iα Re u0)D2ϕ̃(1) + (α4+iα3Re u0 + iα ReD2u0) ϕ̃
(1)

= iα Rap Θ̃
(1)
1 + iα RapPr

−1θ
(1)
0 , (6.9a)

ϕ̃(1)(±1)= Dϕ̃(1)(±1)= 0, (6.9b)

whose solution describes the modal function ϕ̃(1). The velocity components have the
form

εU1 = Ũ1 = ε ∂ψ/∂y= ∂ψ̃/∂y= Dϕ̃(1)(y) eiαx + c.c.= Ũ(1)
1 (y)e

iαx + c.c., (6.10a)

εV1 = Ṽ1 = ε ∂ψ/∂x= ∂ψ̃/∂x= iα ϕ̃(1)(y) eiαx + c.c.= Ṽ (1)
1 (y)eiαx + c.c. (6.10b)

Analysis of the next order of approximation for temperature starts with (6.3c)
multiplied by ε and followed by substitution of (2.4), (6.5) and (6.10). Forcing on
the right-hand side of (6.3c) contains terms proportional to e0 and e2iαx which leads to
a solution of the form

Θ̃2(x, y)= Θ̃ (0)
2 + (Θ̃ (2)

2 (y)e2iαx + c.c.) (6.11)
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and demonstrates the appearance of a net heat transfer between the two walls. Details
are not given due to the length of the equations.

Analysis of the next order of approximation for the flow field starts with (6.3a,b,d)
multiplied by ε and followed by substitution of (2.4), (6.5), (6.10) and (6.11). Forcing
on the right-hand side of (6.3a,b) contains terms proportional to e0 and e2iαx which
leads to a solution of the form

εU2(x, y)= Ũ2(x, y)= Ũ(0)
2 + (Ũ(2)

2 (y)e
2iαx + c.c.), (6.12a)

εV2(x, y)= Ṽ2 (x, y)= Ṽ (0)
2 + (Ṽ (2)

2 (y)e2iαx + c.c.), (6.12b)

εP2(x, y)= P̃2 (x, y)= P̃(0)2 + Ãx+ (P̃(2)2 (y)e
2iαx + c.c.). (6.12c)

It is simple to show that Ṽ (0)
2 = 0. Substitution of (6.10) and (6.12) into (6.3a) and

extraction of mode zero leads to the following problem:

D2Ũ(0)
2 = V (1)

1 DŨ
(−1)

1 + V (−1)
1 DŨ

(1)

1 + Ã, Ũ(0)
2 (±1)= 0,

∫ 1

−1
Ũ(0)

2 dy= 0 (6.13a–c)

where (6.13c) represents the flow-rate constraint. The pressure-gradient correction can
be evaluated as

A= 1.5(K1 − K2) (6.14a)

where

K1 =
∫ 1

−1
f (y) dy, K2 = f (1), f (y)=

∫ y

−1
g(y) dy, g(y)= Ṽ (1)

1 Ũ(−1)
1 + Ṽ (−1)

1 Ũ(1)
1

(6.14b–e)

without the need for an explicit determination of ε. In the above, Ã = εA. Equation
(6.14) demonstrates that the pressure-gradient correction results from the nonlinear
effects associated with the buoyancy-induced motion. Equation (6.14b) represents the
Reynolds stress integrated over one wavelength in the x-direction, and K2, (6.14c),
represents this stress integrated across the channel. It may be concluded that the
pressure-gradient-reducing effect is a result of the Reynolds stress created by the
heating. In the following discussion we shall refer to g(y) as the Reynolds stress
function. A general solution of (6.6), (6.9) and (6.14) has been determined using the
same collocation method as described in § 3. Integrations in (6.14) have been carried
out with fourth-order accuracy.

We shall now discuss in detail how the Reynolds stress changes as a function of the
intensity of the axial flow (Re), the intensity of the heating (Rap) and the pattern of
heating (α). We begin the discussion with the effects of Re. When Re = 0, solution of
(6.6) is trivial, i.e. Θ̃1 = 0, convective motion is described by (6.9), the resulting Ũ1

is purely imaginary and Ṽ1 is purely real, the phase shift between Ũ1 and Ṽ1 is π/2,
the Reynolds stress function g(y) becomes null and the pressure-gradient correction
becomes zero. Convection is purely periodic in x, and it does not contribute to nor
generate any net axial motion. The form of (6.14b) demonstrates that the phase shift
has to be different from π/2 in order to generate a non-zero A.

Assume now that Re is small but finite. The solution for (6.6) and (6.9) can be
represented as asymptotic expansions in terms of Re of the form:

Θr = ReΘr1 + Re2Θr2 + O(Re3), Θi = ReΘi1 + Re2Θi2 + O(Re3),

Θ̃
(1)
1 =Θr + iΘ i,

}
(6.15a)
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Drag reduction due to spatial thermal modulations 413

ϕr = ϕr0 + Reϕr1 + O(Re2), ϕi = ϕi0 + Reϕi1 + O(Re2), ϕ̃
(1)
1 = ϕr + iϕi. (6.15b)

Substitution of (6.15) into (6.6) and retention of terms proportional to the two lowest
powers of Re results in the following systems:

O(Re) : D2Θr1 − α2Θr1 = 0, D2Θi1 − α2Θi1 = α u0θ
(1)
0 , (6.16a–b)

O(Re2) : D2Θr2 − α2Θr2 =−α Pr u0Θi1, D2Θi2 − α2Θi2 = 0. (6.17a–b)

It is obvious that Θr1 = 0 and Θi2 = 0, and (6.17a) has been simplified accordingly.
The same process applied to (6.9) result in the systems:

O(Re0) : D4ϕr0 − 2α2D2ϕr0 + α4ϕr0 = 0, (6.18a)
D4ϕi0 − 2α2D2ϕi0 + α4ϕi0 = α RaPr−1θ

(1)
0 , (6.18b)

O(Re1) : D4ϕr1 − 2α2D2ϕr1 + α4ϕr1 =−α u0 D2ϕi0 + (α3 u0 + αD2u0) ϕi0, (6.19a)
D4ϕi1 − 2α2D2ϕi1 + α4ϕi1 = 0. (6.19b)

It is again simple to show that ϕr0 = 0 and ϕi1 = 0, and (6.19a) has been simplified
accordingly. Explicit evaluations of Θi1, Θr2, ϕi0 and ϕr1, which require numerical
work, are not required for the further discussion. The forms of the velocity
components associated with convection, i.e. Ũ(1)

1 = bReDϕr1 + O(Re3)c + ibDϕi0 +
O(Re2)c and Ṽ (1)

1 = bα ϕi0 + O(Re2)c + ib−α Reϕr1 + O(Re3)c, explicitly demonstrate
that the axial flow is responsible for change in the phase difference between Ũ(1)

1 and
Ṽ (1)

1 leading to formation of the non-zero Reynolds stress function. The form of this
function, i.e.

g(y)= 2Reα ϕi0 Dϕr1 + O (Re2), (6.20)

demonstrates that the pressure-gradient correction increases proportionally to Re. This
prediction is confirmed by solution of the complete flow problem displayed in
figure 12 (see also figure 17).

Variations of the pressure-gradient correction for large Re are more complex but
can be explained in qualitative terms, nevertheless. Equation (6.6) describing the
temperature field has a variable coefficient containing the product (Re u0) and an
inhomogeneous term with a similar product. When Re→∞, these products are large
everywhere except close to the walls where u0 ≈ 0 and thus wall (transition) layers
may form. It can be shown that the solution has the form

Θr ≈−Pr−1θ
(1)
0 , Θi ≈ 0 (6.21)

everywhere except near the bottom wall where θ (1)0 6= 0. The formation of wall layer
for a few values of Re is illustrated in figure 15; the decrease of its thickness with
an increase of Re is clearly visible. Substitution of (6.21) into (2.4) shows that the
flow becomes nearly isothermal outside the wall layer and thus the heating effect (and
the buoyancy force) are confined to this layer only. This fact is also illustrated in
figure 6(b) displaying isotherms of the complete temperature field.

Equation (6.9) describing the velocity field contains a variety of coefficients,
including some that are similar to those found in (6.6). Detailed analysis is
cumbersome but the qualitative character of the solution for large Re can be deduced
by looking at the forcing terms on the right-hand side. This forcing disappears outside
the heated wall layer as illustrated explicitly in figure 16 (see also (6.21)). The driving
force (buoyancy) is confined to a thin wall layer but the resulting motion spreads
into the complete flow domain where it is opposed by friction. An increase of Re
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0
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y
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FIGURE 15. Distribution of the temperature modal function Θ̃ (1)
1 for the heating wavenumber

α = 2 and the Rayleigh number Rap = 200 for the flow Reynolds numbers Re =
20, 100, 1000. Solid and dashed lines correspond to the real and imaginary parts of Θ̃ (1)

1 ,
respectively. Dotted line illustrates conduction effect (−Pr−1θ

(1)
0 ).

0–1
y

1

0.3
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0.1

0

–0.1

100 100

200 20
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1000

FIGURE 16. Distribution of the Ũ(1)
1 modal function for the flow Reynolds numbers

Re = 20, 100, 1000 and convection corresponding to the Rayleigh number Rap = 200
and the heating wavenumber α = 2. Solid and dashed lines correspond to the real and
imaginary parts, respectively. Dotted lines illustrate distribution of the forcing function
(iα Rap Θ̃

(1)
1 + iα RapPr

−1θ
(1)
0 ) appearing on the right-hand side of (6.9a) for the same values

of Re, and the dash–dot lines show distribution of δ/2π where δ is the phase difference
between Ũ(1)

1 and Ṽ (1)
1 .

reduces the thickness of the wall layer, reduces the effectiveness of the driving force
and results in a less intense motion concentrated closer and closer to the lower wall,
as illustrated in figure 16. The pressure-gradient correction decreases as a result of
the weaker convection. An additional decrease results from the rearrangement of the
phase difference between Ũ1 and Ṽ1, as illustrated in figure 16. This phase difference
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A

Re
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10–4

10–3
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10–1

100

10–1 100 101 102

FIGURE 17. Variation of the pressure-gradient correction A as a function of the flow
Reynolds number Re for the heating corresponding to the Rayleigh numbers Rap =
200, 400, 1000 and the wavenumber α = 2. Solid and dash–dot lines correspond to solutions
of the complete and simplified (see § 6) problems, respectively. Dashed lines identify
asymptotes.

is nearly π/2 outside the wall layer, rapidly changes across this layer and returns back
to π/2 as y→−1.

The variation of the pressure-gradient correction as a function of Re for the whole
range of Re of practical interest is illustrated in figure 17. Correction A increases
linearly for small Re, reaches a certain maximum and then rapidly drops off when Re
becomes large. The same pattern can also be observed in figure 12.

Consider now the effects of the heating intensity. An increase of the Rayleigh
number Rap is expected to increase the pressure-gradient correction. Since both Ũ(1)

1

and Ṽ (1)
1 are directly proportional to Rap, this increase is proportional to Ra2

p, as
illustrated in figure 14. This figure also demonstrates that the simplified analysis
presented in this section is valid for surprisingly large Rap values. If convection is too
strong, secondary structures appear resulting in the reduction of A, as has already been
discussed in § 5 (see figures 13 and 14).

The pattern of heating, as quantified by the heating wavenumber α, also has a
strong effect on the form of convection and thus on the Reynolds stress. The analysis
begins with long-wavelength heating, i.e. α→ 0. Forcing expressed by (2.4) can be
approximated as

θ
(1)
0 = (1+ y)/8+ α2 (y2−1)/16+ O(α4) (6.22)

and this permits representation of the solution in the form of asymptotic expansions in
power of α, i.e.

Θ̃
(1)
1 = αG1 + α2G2 + O(α3), ϕ̃

(1)
1 = α F1 + α2F2 + O(α3). (6.23)

Substitution of (6.22)–(6.23) into (6.6) and (6.9) and retention of terms of the two
lowest powers in α results in the following systems:

O(α) : D2G1 = iRe u0(1− y)/8, D2G2 = iRePr u0 G1, (6.24)

O(α2) : D4F1 = i Rap Pr
−1(1− y)/8,

D4F2 = iRe u0 D2F1 − iReD2u0 F1 + i Rap G1,

}
(6.25)
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supplemented by the homogeneous boundary conditions. Solutions of both systems can
be determined explicitly but it is sufficient for the purposes of this discussion to note
that G1 and F1 are purely imaginary, and G2 and F2 are purely real. It is simple to
show that the Reynolds stress function g(y) can be expressed as

g(y)= 2α4 (F̂1 DF2 + F2 DF̂1) (6.26)

where F1 = iF̂1, which demonstrates that the pressure-gradient correction decreases
proportionally to α4. Part of this decrease is due to the weakening of the convection
for smaller α and part is due to the phase shift between Ũ(1)

1 and Ṽ (1)
1 approaching

π/2. This prediction is confirmed by solution of the complete problem displayed in
figure 19.

Analysis of flow response for short-wavelength heating, α→∞, begins by noting
that the thermal forcing can be approximated as

θ
(1)
0 (y)= 0.25e−α(1+y). (6.27)

Substitution of (6.27) into (6.6) and introduction of a stretched variable Y = α(y+ 1)
and representation of the velocity u0 in terms of Y leads to

d2Θ̃
(1)
1

dY2 −
[
1+ α−2 iPr Re

(
2Y − α−1Y2

)]
Θ̃
(1)
1

= 0.25α−2 iRe
(
2Y − α−1Y2

)
e−Y . (6.28)

A solution of (6.28) is assumed in the form of an asymptotic expansion in powers of
α−1, i.e.

Θ̃
(1)
1 = α−2 H2 + α−3H3 + O(α−4). (6.29)

Its substitution into (6.28) and retention of the two leading-order terms results in the
following systems:

O(α−2) : d2H2

dY2 − H2 = 0.5 iRe Ye−Y, (6.30a)

O(α−3) : d2H3

dY2 − H3 =−0.25 iRe Y2e−Y, (6.30b)

supplemented by the homogeneous boundary conditions. The solutions are

H2 =−0.125 iRe (Y + Y2)e−Y, H3 = 0.125 iRe (Y/2+ Y2/2+ Y3/3)e−Y . (6.31a,b)

Figure 18 shows that temperature modulations created by convection are not able to
penetrate deep into the channel. The thickness of the penetration zone as well as the
maximum temperature correction decrease rapidly with an increase of α.

A similar process applied to the flow problem results in a modal equation of the
form

d4ϕ̃(1)

dY4 +
[−2+ iα−2Re

(
2Y − α−1Y2

)] d2ϕ̃(1)

dY2

+ [1+ iα−2Re
(
2Y − α−1Y2

)− 2 iα−3Re
]
ϕ̃(1)

= iα−3 Ra
(
α−2H2 + α−3H3

) + 0.25 iα−3 RapPr
−1e−Y . (6.32)

The solution is assumed as an asymptotic expansion

ϕ̃
(1)
1 = α−3 B3 + α−4B4 + α−5B5 + O(α−6). (6.33)
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FIGURE 18. Distribution of the imaginary part of the temperature modal function Θ̃
(1)
1

(a) and real part of the u-velocity modal function Ũ(1)
1 (b) for the heating wavenumbers

α = 10, 20, 30 and the heating intensity corresponding to the Rayleigh number Rap = 200
with the flow corresponding to the Reynolds number Re= 1.

400

10

1000

10–6

10–4

10–2

10–1 100 101
10–8

100

FIGURE 19. Variation of the pressure-gradient correction A/Re as a function of the
heating wavenumber α for the flow Reynolds numbers Re = 1, 10 and the heating intensity
corresponding to the Rayleigh numbers Rap = 200, 400, 1000. Solid and dash–dot lines
correspond to solutions of the complete and simplified (see § 6) problems, respectively.
Dashed lines identify asymptotes.

Its substitution into (6.32) and retention of terms of the three leading orders of
magnitude results in the following systems:

O(α−3) : d4B3

dY4 − 2
d2B3

dY2 + B3 = 0.25 i RapPr
−1e−Y, (6.34a)

O(α−4) : d4B4

dY4 − 2
d2B4

dY2 + B4 = 0, (6.34b)

O(α−5) : d4B5

dY4 − 2
d2B5

dY2 + B5 =−iRe
(
2Y − Y2

) d2B3

dY2

− iRe
(
2Y − Y2

)
B3 − i Rap H2. (6.34c)
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Solutions have the form

B3 = i Rap Pr
−1 Y2eY/32, B4 = 0. (6.35a–b)

It is sufficient to note that B5 is purely real. The velocity components have the form

Ũ(1)
1 (y) = O (α−4)+ i

[
α−2Rap Pr

−1(2Y − Y2)e−Y/32+ O(α−5)
]
, (6.36a)

Ṽ (1)
1 = bα−2Rap Pr

−1Y2 e−Y/32+ O(α−5)c + i O(α−4), (6.36b)

which lead to the Reynolds stress function g(y) = O(α−7) and the pressure-gradient
correction decreasing as α−7 when α increases. This prediction is verified by
comparison with the solution of the complete problem displayed in figure 19. The
decrease is primarily due to the weakening of the convection as the effect of Re,
and thus the phase change between Ũ(1)

1 and Ṽ (1)
1 , contribute at the level O(α−7).

Figure 18(b) explicitly demonstrates that the depth of convection penetration is very
small and that the intensity of convection rapidly decreases as α increases.

Figure 19 illustrates the variation of the pressure-gradient correction over a wide
range of heating wavenumbers. It is clear that the magnitude of drag reduction
of practical interest can be generated only by heating with the wavenumbers O(1).
Both an excessive reduction and an excessive increase of α reduce the intensity of
the convection and alter its spatial distribution in such a way that the Reynolds
stress function rapidly diminishes resulting in a rapid decrease of the pressure-gradient
correction.

7. Summary
The principle of drag reduction due to spatially modulated heating has been

described. The drag-reducing effect relies on the formation of separation bubbles.
The size, distribution and intensity of motion inside these bubbles are controlled by the
pattern and intensity of the externally imposed heating. Two mechanisms contribute
to the overall effect. In the first, the bubbles separate the main stream from the
bounding walls and, as a result, the walls are in contact with a slowly moving fluid
inside separation zones rather than with the main stream and, thus, are exposed to a
reduced shear. This mechanism is qualitatively similar to the superhydrophobic effect
where bubbles of fluid with viscosity smaller than the main stream separate this stream
from the bounding walls. The second mechanism takes advantage of the buoyancy
force which contributes to the fluid rotation inside separation bubbles and, in this way,
creates a supplementary propulsive force that reduces the magnitude of the pressure
gradient required to drive the prescribed mass flow rate. This force results from
Reynolds stresses created by the buoyancy-driven convection.

The bubbles are effective for drag reduction only in flows with small Re, since
stronger flows wash them away. Explicit analysis of a sinusoidal heating pattern shows
an increase of drag reduction proportional to Ra2

p and reaching up to 87 % of the
isothermal reference value at Rap = 5000. This increase saturates when the heating
becomes too extreme as additional flow structures are formed in the flow, increasing
the overall dissipation. Only heating patterns corresponding to the heating wavenumber
α = O(1) generate drag reduction that is of practical interest. The drag-reducing effect
decreases proportionally to α4 when the heating wavenumber becomes too small and
to α−7 when the heating wavenumber becomes too large. This decrease correlates with
the decrease of the strength of the natural convection and, thus, with the decrease
in the magnitude of the Reynolds stresses. It is expected that a more effective drag
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reduction could be achieved by optimizing heating patterns, including using three-
dimensional patterns, and insulating the unheated wall to prevent escape of the heat.
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