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This study aims to extract and characterize structures in fully developed pipe flow at
a friction Reynolds number of Reτ = 12 400. To do so, we employ data-driven wavelet
decomposition (DDWD) (Floryan & Graham, Proc. Natl Acad. Sci. USA, vol. 118, 2021,
e2021299118), a method that combines features of proper orthogonal decomposition and
wavelet analysis in order to extract energetic and spatially localized structures from
data. We apply DDWD to streamwise velocity signals measured separately via a thermal
anemometer at 40 wall-normal positions. The resulting localized velocity structures, which
we interpret as being reflective of underlying eddies, are self-similar across streamwise
extents of 40 wall units to one pipe radius, and across wall-normal positions from
y+ = 350 to y/R = 1. Notably, the structures are similar in shape to Meyer wavelets.
Projections of the data onto the DDWD wavelet subspaces are found to be self-similar
as well, but in Fourier space; the bounds of self-similarity are the same as before, except
streamwise self-similarity starts at a larger length scale of 450 wall units. The evidence of
self-similarity provided in this study lends further support to Townsend’s attached eddy
hypothesis, although we note that the self-similar structures are detected beyond the log
layer and extend to large length scales.

Key words: pipe flow, turbulence modelling, boundary layer structure

1. Introduction

While statistical approaches dominated the first half of the 20th century in understanding
the dynamics of turbulence, the increasing availability of experimental and direct
numerical simulation (DNS) data has enabled structure-based approaches to yield
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useful insights. For example, in the viscous sublayer of wall-bounded flows, turbulent
structures coherent in space and time were discovered and characterized using hydrogen
bubble visualization (Kline et al. 1967). These structures consisted of streaks, which are
spanwise-alternating regions of high-speed and low-speed fluid, and quasi-streamwise
vortices. From this characterization of the sublayer structures, the self-sustaining process
(SSP) was developed and is now a widely accepted model for how these structures sustain
themselves (Hamilton, Kim & Waleffe 1995; Waleffe 1997; Jiménez & Pinelli 1999). It
is evident that the detailed characterization of turbulent structures is a necessary first step
toward a mechanistic understanding and modelling of wall-bounded turbulence. Structures
in wall-bounded turbulence are reviewed by Robinson (1991), Adrian (2007), Jiménez
(2012), and McKeon (2017).

With an eye toward a structural model of wall-bounded turbulence, Townsend proposed
the attached eddy hypothesis (AEH) for asymptotically high-Reynolds number flows
(Townsend 1976). The AEH supposes that the main, energy-containing motion is made
up of contributions from attached eddies. Attached eddies are persistent flow patterns in
the log layer whose size scales linearly with their distance from the wall; they span the
entire range of scales in the log layer and – critically – are presumed to be geometrically
self-similar. The AEH makes specific predictions for how the normal components of the
Reynolds stress vary with distance from the wall, which are borne out by experimental
(Hultmark et al. 2012; Hutchins et al. 2012; Kulandaivelu 2012; Winkel et al. 2012;
Marusic et al. 2013) and numerical data (Lee & Moser 2015). Townsend did not commit
himself to a particular form for the attached eddies in his statistical AEH model. Inspired
by Kline et al. (1967), Townsend considered a physical, double-cone model; unfortunately,
it was inconsistent with the AEH, and Townsend’s modelling efforts ended there.

Inspired by the flow visualization results of Head & Bandyopadhyay (1981), Perry &
Chong (1982) specified a shape for the attached eddies, leading to their attached eddy
model (AEM). In addition to making the same predictions as the AEH for the normal
components of the Reynolds stress, their AEM also yields the log law for the mean flow
and predictions for streamwise spectra. They found that all eddy shapes yield similar first-
and second-order statistics, but predictions beyond basic statistics are dependent on the
shape of the eddy. A key point is that attached eddies, however they look, are spatially
localized. More details on the AEM and subsequent refinements are reviewed by Marusic
& Monty (2019).

Partly spurred by the success of the AEH, an increasing abundance of investigations
have explored whether self-similar coherent motions are present in wall-bounded
turbulence. Tomkins & Adrian (2003) found that the spanwise length scales of
conditionally averaged low-speed structures grew linearly with distance from the wall,
as attached eddies are supposed to. del Álamo et al. (2006) found that, on average, the
spanwise and streamwise length scales of vortical structures grow roughly linearly with
distance from the wall. Lozano-Durán & Jiménez (2014) concluded the same for sweep
and ejection structures, and Hwang & Sung (2018) concluded the same for structures of
positive or negative velocity fluctuations. These studies show that the length scales of
various structures grow, on average, with distance from the wall.

Evocative results were published by Dennis & Nickels (2011). By conditionally
averaging their three-dimensional (3-D) particle image velocimetry measurements based
on spanwise swirl strength at a chosen distance from the wall, they extracted a structure
with the shape of a horseshoe vortex. Repeating the analysis at several distances from
the wall, they found a similar shape at each distance whose size grew with distance
from the wall. The authors suggested that the shape would make a sensible choice of a
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‘representative eddy’. Although the analysis was qualitative and performed in the outer
layer, it provided exciting hints of the presence of self-similar coherent structures.

Recalling that Townsend’s eddies constitute the main energy-containing motions,
Hellström, Marusic & Smits (2016) used proper orthogonal decomposition (POD) to
explore the existence of self-similar eddies in turbulent pipe flow. These results were also
highly evocative as the leading (most energetic) POD modes collapsed on top of each other
when scaled by their size. The self-similar POD modes spanned a decade in wall-normal
length scales, and the largest structures extended into the outer region.

Although POD provides an approach to extracting energetic structures from data, it
has the drawback that in homogeneous directions, the POD modes are constrained to
be Fourier modes, precluding direct identification of structure or localization (Holmes
et al. 2012). Lumley has espoused the view that such unlocalized structures should not be
considered eddies (Lumley 1970; Tennekes & Lumley 1972; Lumley 1981). A well-known
formalism incorporating localization is that of wavelets. A wavelet basis consists of
elements localized in both space and scale. Traditionally, the basis elements are formed
by translations and dilations of a pre-specified vector called the mother wavelet; this
construction makes wavelets perfectly self-similar across scales. Due to their localization
and the space-scale unfolding they produce, wavelets have found much use in turbulence
(Argoul et al. 1989; Everson, Sirovich & Sreenivasan 1990; Meneveau 1991a,b; Yamada &
Ohkitani 1991; Farge 1992; Katul, Parlange & Chu 1994; Katul & Vidakovic 1998; Farge,
Pellegrino & Schneider 2001; Farge et al. 2003; Okamoto et al. 2007; Ruppert-Felsot,
Farge & Petitjeans 2009). More information about wavelets is available in the brief review
article by Strang (1989) and in the books by Daubechies (1992), Meyer (1993), Mallat
(1999), and Frazier (2006).

In applications, a drawback of wavelets is that there are many possible choices
for the mother wavelet. Naturally, one may wonder which wavelet is best suited for
a particular application. Katul & Vidakovic (1996) considered this question in the
context of atmospheric turbulence. Motivated by the AEH, they sought to decompose
flow variables into contributions from attached (energy-containing) eddies and detached
(negligible-energy) eddies. Katul & Vidakovic used an entropy-minimizing scheme
developed by Coifman & Wickerhauser (1992) to select the optimal wavelet from a library
of known wavelets. We emphasize that the shapes of the wavelets are still pre-specified and
that they are perfectly self-similar across different scales. These two features – common in
any traditional wavelet analysis – are undesirable if one’s goal is to extract structure from
data and to determine the degree of self-similarity of the data.

Motivated by the preceding discussion, Floryan & Graham (2021) developed a technique
called data-driven wavelet decomposition (DDWD). DDWD integrates the data- and
energy-driven nature of POD with the space and scale localization properties of wavelets
without imposing self-similarity across scales. Floryan & Graham (2021) applied DDWD
to homogeneous isotropic turbulence and found that the structures in the data (represented
by the data-driven wavelets) were self-similar for scales corresponding to the inertial
subrange, reminiscent of the Richardson cascade. Our goal in this work is to leverage
DDWD as a data-driven basis of energetic, spatially localized, multiscale vectors for
characterizing the shape and self-similarity of structures in wall-bounded turbulence. We
extend and apply the technique to experimental measurements in high-Reynolds number
pipe flow. As we will show, we identify strongly self-similar, spatially localized, energetic
structures across a range of scales – candidate eddies. We describe the experimental setup
and measurements in § 2. We then briefly review DDWD in § 3 and describe extensions to
accommodate the presently analysed experimental measurements. Section 4 describes the
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Figure 1. Wall-normal positions of the measurement probe.

structures that we identify, and we end by placing our results in the context of the literature
in § 5.

2. Experimental setup

The analysis in this work is based on data acquired in the Princeton Superpipe facility,
a facility capable of creating fully developed pipe flow at high Reynolds numbers.
The data were acquired at a Reynolds number of ReD = UbD/ν = 608 000, with a
corresponding friction Reynolds number of Reτ = uτ R/ν = 12 400, using a cross-wire
thermal anemometry probe. Here, Ub is the bulk velocity, D = 2R is the pipe diameter, ν

is the kinematic viscosity of the fluid, and uτ = √
τw/ρ is the friction velocity, where τw

is the wall shear stress, and ρ is the density of the fluid. The pipe is hydraulically smooth
for this operating condition (McKeon et al. 2004b). Details of the facility can be found in
Zagarola & Smits (1998), and details of the data we use and the measurement probe can
be found in Fu, Fan & Hultmark (2019); we recapitulate below.

The data consist of long time series of the streamwise velocity component measured
at 40 distances from the pipe wall, with two time series taken at each distance. The
measurements at different distances from the wall were not simultaneous. The positions y
of the measurement probe are shown in figure 1, with a superscript + denoting wall units
(non-dimensionalized by ν/uτ ). The measurements were acquired in three regions of the
flow: (I) the power-law region, (II) the log-law region, and (III) the wake region. Although
the log-law region is classically taken to start at y+ = 30 (Pope 2000), experiments
in the Superpipe suggest that the mean streamwise velocity follows a power law for
50 < y+ < 600, with the log law not taking hold until y+ = 600 (McKeon et al. 2004a).

Each time series consists of roughly 1.67 × 107 samples, sampled at Fs = 300 kHz, and
filtered using an analog 8-pole Butterworth filter at 150 kHz. We convert the temporal
signals to spatial signals using Taylor’s frozen field hypothesis, in which case distances
between consecutive samples range from 2.6 wall units at the measurement position closest
to the wall to 4.0 wall units at the measurement position furthest from the wall. The
measurement probe had a volume of 42 μm × 42 μm × 50 μm, or 8.0 × 8.0 × 9.5 wall
units3. The length of the wires in the measurement probe was 60 μm, or 11.4 wall units.

Since the time series were filtered at the Nyquist frequency of 150 kHz during collection,
the energy at the largest wavenumbers k corresponding to the measurement noise remains
unattenuated. We filter each time series again with a two-pole Butterworth filter at 25 kHz.
Figure 2 shows the effect of this filter on the premultiplied power spectral density (PSD) of
the signal measured closest to the wall at y+ = 350 (the rest of the time series are affected
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Figure 2. Premultiplied PSD of u, measured at y+ = 350, without and with filtering at 25 kHz.
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Figure 3. Heat map of the time correlation function at all wall-normal positions. Nτ = τFs is the number of
points needed to capture a time lag of τ (s), and τUb/R is the dimensionless eddy turnover time.

similarly by the same filter). The PSD, φuu, was estimated using segments that contained
219 elements, overlapped by 50 %, and windowed with the Hamming window.

Before describing the method we will use to analyse the structure of the Superpipe
data, we estimate the largest coherent structure – or eddy – we can expect to find. The
largest eddies in a flow are usually referred to as the very-large-scale motions (VLSMs),
and their sizes can be obtained from the PSD of the streamwise velocity. Specifically,
the initial peak in the premultiplied PSD is taken to correspond to the VLSM (Kim
& Adrian 1999). Selecting this peak can be difficult, however, since producing a good
estimate of the PSD involves a tradeoff between using longer data segments (yielding
greater resolution in k) and more segments (yielding less variance in the PSD estimate).
Even though our time series are rather long, the PSD in figure 2 is the best we can produce
without relying on using a moving-average filter in k-space. Estimating the location of the
initial peak in the premultiplied PSD can be fraught with uncertainty. To avoid the tradeoff
involved in estimating PSDs, we opted to use the time correlation function to estimate the
largest expected coherent structure. The heatmap of the time correlation function at all
40 wall-normal positions is shown in figure 3, and it suggests that all 40 time series are
correlated up until 10 eddy turnover times. Since Ub = 5.4 m s−1 and the mean velocity Ū
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only ranges from 4.2 to 6.4 m s−1 over the range of wall-normal positions considered here,
one can effectively say that the structures at all wall-normal positions are correlated in the
streamwise direction up until O(1R) to O(10R). VLSMs have previously been estimated
to be O(10R) in length (Kim & Adrian 1999).

3. Data-driven wavelet decomposition

Data-driven wavelet decomposition was introduced by Floryan & Graham (2021), and has
its roots in POD and wavelet analysis. First, we provide a conceptual overview of DDWD
and its connections to POD and wavelet analysis – for full details, we refer the reader to
Floryan & Graham (2021) and to Appendix A. We then describe the pre-processing steps
and modifications needed to analyse the long time series described in § 2.

3.1. Overview and connections to POD and wavelet analysis
We consider periodic vectors z ∈ R

N , with N even, and a dataset {zi ∈ R
N}M

i=1. Wavelets,
POD, and DDWD construct different orthonormal bases for R

N . We interpret the basis
elements as structures. Wavelet basis elements are localized structures that are independent
of the data being analysed. POD basis elements, on the other hand, tend to be global
structures, and they derive from the data under consideration. Specifically, POD basis
elements are constructed via an energy maximization problem and are thus interpreted as
energetic structures present in the data. DDWD combines the main features of wavelets
and POD, producing basis elements representing energetic, localized structures present in
the data.

For our purposes, the most useful way to think about wavelets is by the associated
subspaces. A wavelet basis splits R

N into two orthogonal subspaces of dimension N/2:
the approximation subspace V−1, and the detail subspace W−1. Subspace V−1 is spanned
by N/2 mutually orthonormal even translates of the father wavelet, φ−1, and subspace
W−1 is spanned by N/2 mutually orthonormal even translates of the mother wavelet, ψ−1.
(By ‘even’, we mean that the translates are shifted by an even number of mesh points.) The
mother wavelet can be constructed from the father wavelet, and vice versa. Traditionally,
projecting a vector in R

N onto the approximation subspace V−1 yields a low-pass filtered
version of the vector, and projecting the vector onto the detail subspace W−1 yields a
high-pass filtered version of the vector (hence the nomenclature of ‘approximation’ and
‘detail’ subspaces). Since V−1 and W−1 are orthogonal complements, the vector is equal
to the superposition of these two projections. The splitting of subspaces is performed
recursively on the approximation subspace, ultimately yielding a decomposition
R

N = V−p ⊕ W−p ⊕ · · · ⊕ W−1 for N = 2p, illustrated in figure 4. One may think of
this decomposition as the direct sum of a very coarse approximation subspace (V−p)
and progressively finer detail subspaces (W−p to W−1). At each stage l, V−l and W−l
are respectively spanned by N/2l mutually orthonormal translates of φ−l and ψ−l. In
a traditional wavelet basis, one specifies the mother wavelet, ψ−1, and all other basis
elements derive from the mother wavelet. An example – the Haar wavelet basis – is shown
in figure 5. Note two salient features of wavelet bases: spatial localization of the basis
elements, and self-similarity across stages (the wavelets at coarser stages are essentially
simple dilations of the mother wavelet).

POD can be considered in a similar light as wavelet analysis. Letting {uj}N
j=1

denote the ordered set of POD basis elements, we have the following decomposition:
R

N = span(u1) ⊕ · · · ⊕ span(uN). That is, POD decomposes R
N into a direct sum of
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Figure 4. Subspaces formed by wavelets periodic in R
N . The full space R

N is composed of the highlighted
subspaces.

R8

Figure 5. Haar wavelets on R
8, following the style of figure 4. The Haar basis for each subspace is shown.

1-D subspaces. Whereas wavelet subspaces are ordered by scale, POD subspaces are
ordered by energy content; whereas wavelet subspaces are determined by the choice of
the mother wavelet, POD subspaces are determined from data.

DDWD combines POD and wavelet analysis. Namely, it maintains the subspace
structure of a wavelet basis (shown in figure 4, where each subspace is spanned by
mutually orthonormal translates of a single wavelet), but the wavelet at each stage is
determined from data by an energy maximization principle. Letting E(·) denote the
energy of a dataset contained in a subspace, orthogonality of the subspaces implies that
E(V−l) = E(V−l−1) + E(W−l−1). That is, whenever a subspace is split, the energy
contained in it is also split. Motivated by the observation that large-scale (or coarse)
structures tend to be the most energetic ones in fluid flows, each time we split a subspace,
we design the subsequent subspaces so that the approximation subspace contains as
much of the dataset’s energy as possible. An analogous approach is to progressively
minimize the energy in the detail subspaces. The design of the subspaces can be framed
as an optimization problem. Consider an ensemble of M data vectors forming the dataset
Z = [z1 z2 · · · zM] ∈ R

N×M . The mathematical formulation for finding the first-stage
DDWD wavelet is

min
ψ−1

1
‖Z‖2

F

N/2−1∑
m=0

‖ZTR2m(ψ−1)‖2

︸ ︷︷ ︸
ME1

+λ2Var(ψ−1)

s.t. ψT
−1R2m(ψ−1) = δm0, m = 0, . . . , N/2 − 1,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.1)

where Rq is the linear operator that circularly shifts its input by q (e.g. for
ψ−1 = [a, b, c, d]T, R1(ψ−1) = [d, a, b, c]T). Above, E1 denotes the mean energy of the
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data vectors projected onto W−1, and F denotes the Frobenius norm. The first term in (3.1)
is the fraction of the dataset’s energy in the finest detail subspace (which typically contains
the smallest scale). The circular variance of the wavelet, which is bounded between 0 and
1, is penalized in the second term to encourage the wavelet to be spatially localized. The
results are robust to the strength of the penalty parameter λ2, with the penalty term hardly
affecting the wavelets’ ability to capture energy (Floryan & Graham 2021). The reason is
that the penalty term manipulates the phases of each Fourier component of a wavelet to
achieve spatial localization while essentially leaving the magnitudes untouched. Moreover,
we find that the shape of the wavelet found by DDWD is generally robust to the choice of
λ2 across several orders of magnitude (see appendix A.2). For the results in this work, we
have used λ2 = 10−4.

The wavelets at later stages are found recursively. To find ψ−2, we project the dataset
onto V−1, replace N by N/2 and R2m by R4m in (3.1), and decrease λ2 by a factor of 4
(Floryan & Graham 2021). In the end, DDWD produces an energetic hierarchy of spatially
localized orthonormal structures.

We emphasize two differences between DDWD and traditional wavelet analysis. The
first is that the concept of energy is built into DDWD. Whereas the stage of the
decomposition induced by a traditional wavelet basis is synonymous with the scale of
the wavelets, this is not necessarily the case for a basis produced by DDWD since energy
is also taken into account. Scale and energy are often related in fluid flows, however, in
which case the energetic hierarchy of structures found by DDWD will also be a hierarchy
of scales.

The second difference is that self-similarity across stages is not built into DDWD.
It bears repeating that only energy is taken into consideration when finding structures
at each stage of the decomposition, and a separate optimization problem is solved at
each stage. For data that are not self-similar, neither are the basis elements produced
by DDWD. The converse is also true: self-similarity in the data manifests itself in
self-similar basis elements. In Floryan & Graham (2021), DDWD applied to data from
homogeneous isotropic turbulence produced self-similar basis elements in the range of
scales corresponding to the inertial subrange, while when it was applied to white noise
and data generated by the Kuramoto–Sivashinsky equation, the basis elements were not
self-similar. Determining the degree of self-similarity of structures in the Superpipe data
will feature prominently later in this work.

3.2. Pre-processing and modifications for long time series
Like POD, DDWD uses an ensemble of vectors (the data). Here, however, we have two
long time series of data (for each wall-normal position, which will be analysed separately).
We form an ensemble by breaking the two time series into many shorter segments, as
is done when estimating the PSD. Doing so introduces a number of issues that must be
addressed: how long should the shorter segments be; how can border effects be minimized;
and how can we efficiently capture very small and very large structures?

3.2.1. Data segmentation
We first address how to segment a long time series into an ensemble of shorter segments
of length N = 2p. The segments need to be long enough to capture the length of the largest
coherent structure – or eddy – in the flow. Figure 3 suggests we need p ≥ 15 to capture
the largest correlated structure; however, the last 2–3 stages of any wavelet basis contain
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wavelets that are not spatially localized. We set p = 18 to ensure the largest spatially
localized wavelet represents the largest correlated/coherent structure.

3.2.2. Border effects
Following the classical discrete wavelet transform, DDWD implicitly assumes that signals
are periodic. Of course, this is not true for our segmented data. If a segment of data is
treated as periodic, there will generally be a discontinuity when the end of the segment
is wrapped back around to the beginning. A wavelet decomposition of a signal with a
discontinuity generally has high energy in the small-scale wavelets localized around the
discontinuity. This border effect could greatly distort the data-driven wavelets found by
DDWD.

To circumvent distortions due to border effects, we turn to PSD estimators. PSD
estimators based on the discrete Fourier transform also implicitly assume periodic signals,
so they are also subject to border effects. To minimize border effects, estimators window
the data vectors before taking discrete Fourier transforms of them (Press et al. 2007).
Windowing data consists of multiplying the data by a function w that rises from zero to a
peak of one and then falls back to zero. We do the same, windowing our data vectors with
a 50 % Tukey window before performing DDWD on them. Meneveau (1991a) similarly
windowed his non-periodic data before performing a wavelet analysis. We have tested this
procedure on windowed and unwindowed periodic data, finding that windowing does not
affect the shapes of the data-driven wavelets. The type of window used also does not have
a significant impact. We double the number of data vectors by overlapping the segments
by 50 %; this is a common practice to decrease variance when estimating spectra (Press
et al. 2007), and doing so allows almost every part of the signal to appear in our dataset
unattenuated by the 50 % Tukey window.

Since windowing data attenuates the signal, PSD estimators compensate for this
attenuation in order to calculate accurate estimates of the energy contained within each
Fourier mode. For a window w ∈ R

N , the attenuation caused by the windowing is
counteracted by dividing the energy in each Fourier mode by wTw/N, which is bounded
between zero and one (Press et al. 2007). Each DDWD subspace contains basis elements
that (as a whole) span the entire spatial domain, just like individual Fourier modes.
Consequently, we can account for the attenuation from the windowing by dividing
the energy in Z and each DDWD subspace by wTw/N. We account for the segment
overlapping, which doubles our number of data vectors, by further dividing the energy by
2. The additional factor arises for the following reason. The energy of the long time series u
(before segmenting it) is uTu. After we segment it with 50 % overlap, we store the resulting
segments in a data matrix Z . Each entry of u appears twice in Z due to the 50 % overlap
(except entries near the beginning and end of u). Then the energy in Z is ‖Z‖2

F ≈ 2uTu.
Note that multiplying the data by a constant does not affect the optimization problem in
(3.1) because of how the first term in the objective function is normalized. Hereafter, l
will denote the stage, and El will denote the stage-l energy with the factor of 2wTw/N
accounted for.

3.2.3. Capturing disparate scales
An important issue is how to efficiently capture very small and very large scales. The
very smallest scales in the data will be of a size on the order of one element (2.6 to
4.0 viscous lengths, depending on the wall-normal position) in our data segments, and
the very largest scales will be of a size on the order of 218 elements (55R to 85R).
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The constrained optimization problem in (3.1) is converted to an unconstrained
optimization problem (see Floryan & Graham 2021) and solved using the BFGS algorithm.
The optimization problem scales poorly since evaluating the converted objective function
once has computational complexity O(N2 log2 N + N2M), and the number of iterations
it takes the BFGS algorithm to converge grows with N (although the rate of growth is
unclear). This makes the problem intractable for data vectors of length 218.

We solve this problem by exploiting the iterative nature of a wavelet decomposition and
the spatial localization of data-driven wavelets. In the first stage of DDWD, we find the
lowest-energy (typically finest-scale) structures. Since these first-stage structures tend to be
highly localized, we do not need long data vectors to capture them. Thus, we can perform
DDWD on an ensemble of short vectors of length Ns � N to capture the smallest-scale
structures.

The result of the first stage of DDWD will be wavelets of length Ns, which form part of
a basis for R

Ns . Ultimately, we need to work our way up to full-length vectors of length N
since we seek a basis for R

N . Taking advantage of the spatial localization of the wavelets,
we simply pad them with zeros until their length is N. With the full-length first-stage
wavelets in hand, we use them to coarsen the full-length data vectors by projecting the data
onto the approximation subspace V−1 (see figure 4). The projected data have length N/2
and are simply coarsened versions of the original data. We proceed iteratively, performing
one stage of DDWD at a time on shortened segments of the coarsened data. The technical
details are in Appendix A.1.

Note that once we have our data-driven wavelets, performing a wavelet decomposition
with them scales well with the length of the data vectors. It is only the algorithm used to
find the data-driven wavelets that scales poorly.

3.2.4. Enforcing zero mean and validating against synthetic data
In traditional wavelet bases, φ−18 from stage p = 18 is always a vector of ones and
represents the mean component of all elements in R

N . Due to orthogonality, all wavelets
ψ−l and their translates must have zero mean. When using DDWD to generate a wavelet
basis for a given dataset, one can introduce a hard constraint to enforce zero mean on
ψ−l (Floryan & Graham 2021); however, this hard constraint is generally not needed since
the energetically minimal ψ−l that DDWD finds also tends to have nearly zero mean.
Nonetheless, we choose to enforce zero mean on ψ−l in this work to mitigate a numerical
issue that causes the wavelets in stages 13 and up to have artificially high wavenumber
content. This numerical issue was found by validating DDWD against synthetic signals
composed of known wavelets (see Appendix A.2 for details). Synthetic data were also
used to demonstrate DDWD’s ability to uncover many types of wavelets, its robustness to
the variance penalty parameter λ2 across multiple orders of magnitude, the necessity of
windowing and the validity of the modification to DDWD described in § 3.2.3.

4. Results

We apply DDWD to the Superpipe data described in § 2. Starting with the measurements
made nearest to the wall (y+ = 350), in §§ 4.1 and 4.2 we respectively examine
the streamwise shape and degree of self-similarity of the localized structures we
compute. Extending the analysis to all wall-normal positions, in § 4.3 we discuss
the computed structures’ streamwise self-similarity and the similarity across different
wall-normal positions. In § 4.4 we examine projections of the data onto the computed
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Figure 6. Comparing the 18-stage DDWD basis at y+ = 350 to three known wavelet bases. (a) Superimposed
wavelets (only DDWD and Meyer shown for clarity). (b) Stage-8 wavelets. (c) Similarity between DDWD basis
and known wavelet bases.

wavelet subspaces. Lastly, in § 4.5 we derive how spectral power law scalings translate to
wavelet space and search for the presence of such scaling laws.

4.1. Shape of localized structures at y+ = 350
Figure 6(a) shows the wavelets contained in the 18-stage DDWD basis. For comparison,
we have also plotted Meyer wavelets. Each plot corresponds to a different stage of the
wavelet decomposition, showing the corresponding wavelet. The plot corresponding to
‘Stage 18a’ shows the basis element for the coarsest approximation subspace, V−18. For
the first 15 stages, the range of the horizontal axis is progressively dilated by a factor of
two. For ease of comparison, we have shifted the wavelets and, in some cases, reflected
them about their horizontal axes (equivalent to multiplying the wavelet coefficients by
−1). Although a stage-l wavelet only has translational invariance with respect to shifts by
2l (i.e. the spacing between its translates), shifting it by any integer is justifiable here since
the translational invariance of the data causes the energy contained in the subspace W−l
to remain the same no matter the shift value. We observe that the scale and stage of the
DWWD wavelets are synonymous. Note that for stages 15 to 18, the wavelets (from all
bases) are not spatially localized or self-similar because their scale approaches the length
of the data segments.

Figure 6(b) shows the shapes of the stage-8 DDWD wavelet and the Meyer,
Fejér–Korovkin 6 (fk6), and Daubechies 2 (db2) wavelets; we chose these wavelets for
comparison since they have varying length scales (which we will quantify later) even
within the same stage. Figure 6(c) quantifies the similarity of these three known wavelets
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to the DDWD wavelet with the inner product

α
(b1,b2)
l =

〈
ψ

(b1)
−l ,ψ

(b2)
−l

〉
, (4.1)

whereψ (b1)
−l is the stage-l wavelet belonging to basis b1 and similarly forψ (b2)

−l (in figure 6c,
b1 is always the DDWD basis, while b2 changes between the three known wavelet bases).
The absolute value of the inner product is bounded between 0 and 1. The DDWD wavelets
obtained from the Superpipe data are quantitatively most similar to Meyer wavelets. This
similarity was also noted when wavelets were computed from data from homogeneous
isotropic turbulence (Floryan & Graham 2021). Two potential reasons that the most
energetic wavelets in these two datasets are similar to Meyer wavelets, as opposed to fk6 or
db2, is that Meyer wavelets are smoother and have a larger length scale at any given stage.
Velocity fields are smooth, so smooth basis functions should give a better representation.
As for the larger length scale, that may be a consequence of the combination of smoothness
and the orthogonality condition, or it may be connected to the fact that there is always a
non-local aspect to incompressible flows because of the global pressure constraint.

Note that at a given stage, wavelets across different bases can appear very different in
shape and width but still have an inner product close to 1 due to having similar Fourier
content. In what follows, we consider shapes to be similar when α

(b1,b2)
l � 0.95.

4.2. Self-similarity of localized structures at y+ = 350
We analyse the similarity of DDWD wavelets across stages, which reflects the streamwise
self-similarity of the velocity signal. To do so, we must introduce the scaling operator
S. The scaling operator is used when constructing a traditional wavelet basis, with
ψ−l = Sψ−(l−1) for all stages. The scaling operator defines our notion of self-similarity:
we say that wavelets across a stage are exactly self-similar when ψ−l = Sψ−(l−1), as is
the case for traditional wavelets. This operator essentially dilates its input wavelet by a
factor of two, as is evident by comparing the Meyer wavelets from one stage to the next in
figure 6(a) (a precise mathematical definition of S is given in Floryan & Graham 2021).
In figure 7(a), the stage-l DDWD wavelets ψ−l are plotted with solid red curves and
the dilated, previous-stage wavelets Sψ−(l−1) are plotted with dashed blue curves. The
wavelets are apparently strongly self-similar across adjacent stages.

To quantify the degree of self-similarity, we compute the inner product

αla,lb =
〈
ψ−la, Sla−lbψ−lb

〉
, la ≥ lb, (4.2)

analogous to (4.1). Figure 7(b) shows αla,lb for la = l and lb = l − 1, which is the inner
product between the solid and dashed wavelets appearing in each subplot in figure 7(a).
A high degree of self-similarity (αl,l−1 � 0.95) across adjacent stages occurs in stages 2
through 11 and then in stages 14 and 15. The drop in self-similarity between stages 11
and 14 is physical – spatially localized structures are no longer self-similar at these stages.
However, since the wavelets in the last 2–3 stages (stages 16 and beyond here) of any
basis span the whole spatial domain, we disregard them hereafter. Finally, we note (but do
not show here) that the drop in self-similarity at stage 11 is robust to decreasing the total
number of stages from p = 18 to p = 14.

Figure 7(c) shows αla,lb for la > lb, la ∈ [2, 15], quantifying the degree of self-similarity
across multiple stages. The results in figure 7(b) appear along the main diagonal in
figure 7(c). One can see that high self-similarity of ψ−l occurs in stages 2 through 11
across all stages, not just adjacent stages.
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grey region covers the range of values encountered across 10 DDWD initializations. (c) Self-similarity across
stages 1 through 15, where the dashed triangle indicates the region of high self-similarity (αla,lb � 0.95).

Altogether, DDWD reveals that coherent velocity structures (induced by eddies) are
highly self-similar in stages 2 through 11. Defining a length scale λx for a wavelet as
the region centred about the origin that contains 90 % of its energy, this range of stages
corresponds to λ+x = 20 through λx/R = 1.26. (Note, our definition for λx is justified
in Appendix A.3 and is unrelated to the Fourier wavenumber k.) Not only does DDWD
give direct evidence of streamwise self-similarity of localized structures in wall-bounded
turbulence, but it also reveals a surprisingly much larger range of self-similarity when
compared to many statistical and structural approaches. Section 5 includes a more detailed
discussion comparing the results obtained using DDWD to those in the literature.

4.3. Self-similarity of localized structures in wall-normal direction
Figure 8(a) shows DDWD bases for three wall-normal positions (one for each region
defined in figure 1): y+ = 350, y/R = 0.10 and y/R = 0.59. The wavelets are shown as
functions of time scaled by the eddy turnover time (using the mean streamwise velocity
at y+ = 350). We plot in time instead of space to avoid the slight dilation of the wavelets
that would occur from using Taylor’s hypothesis. For all wall-normal positions, stage is
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t Ū (y+ = 350)/R
20

0.010

0.1

–0.1

–0.02 0.020

Figure 8. (a) DDWD bases at y+ = 350, y/R = 0.10, and y/R = 0.59. (b) Similarity across adjacent stages
for each basis. (c) Similarity across bases, where b1 is for the signal closest to the wall and b2 is for the signal
either in region II or III (regions defined in figure 1).

synonymous with scale for the DDWD wavelets. For each wall-normal position, figure 8(b)
quantifies the self-similarity of the wavelets across adjacent stages. Our observation of
strong streamwise self-similarity at y+ = 350 extends to the other wall-normal positions
in the range of l ∈ [2, 11]. Figure 8(c) quantifies the self-similarity of the DDWD wavelets
across wall-normal positions by plotting the inner product in (4.1) computed between the
wavelets at y+ = 350 and at the other wall-normal positions. A high degree of wall-normal
self-similarity is present for stages l ∈ [1, 11].

Finally, we quantify the simultaneous self-similarity of the DDWD wavelets in the
streamwise and wall-normal directions. To do so, we first choose a reference wavelet
at stage lref = 8 and wall-normal position y+

ref = 350. Then, we calculate the inner
product between this reference wavelet and all spatially localized wavelets (l ≤ 15) at
all wall-normal positions. We denote this inner product as αref (l, y). Note that either the
reference wavelet or the wavelet at (l, y) is scaled up to stage max(l, lref ) using the scaling
operator S before computing αref (l, y) (which is done in time, not space, to avoid slight
dilations resulting from Taylor’s hypothesis). Figure 9 plots αref (l, y). In § 4.2, the DDWD
wavelets at y+ = 350 exhibited strong self-similarity for l ∈ [2, 11]; however, based on
the criterion αref � 0.95, figure 9 suggests a range of l ∈ [3, 10] for all wall-normal
positions. The slight discrepancy in the range of l is caused by the slight difference
between αla,lb and αref (l, y); we will use the latter range of l ∈ [3, 10] henceforth. Figure 9
suggests that DDWD wavelets, which form spatially localized, energy-containing motions,
are self-similar between streamwise length scales of λ+x = 40 to λx/R = 1 and between
wall-normal length scales of y+ = 350 to y/R = 1. Here, the self-similarity of the data has
been assessed by the self-similarity of the DDWD basis. In the next section, a (perhaps)
more direct method is explored where we assess the self-similarity of the data projected
onto DDWD subspaces of different scales.
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Figure 10. PSDs of u, its stage-l DDWD wavelet projections P lu, and the DDWD wavelets ψ−l at y+ = 350.
Note that the PSDs of the wavelets are manually shifted to be at the same height.

4.4. Self-similarity of wavelet projections
The stage-l wavelet projection P lzi denotes the projection of zi ∈ R

N onto the detail
subspace W−l and is given by

P lzi =
N/2l−1∑

m=0

〈
R2lm(ψ−l), zi

〉
R2lm(ψ−l). (4.3)

Henceforth, P lu denotes the stage-l wavelet projection of the velocity signal u (or rather
its segments) onto the DDWD subspaces.

Wavelet projections, just like wavelets themselves, are multiscale. Larger-scale wavelet
projections occupy the smaller-k range, and vice versa. For y+ = 350, figure 10 shows the
PSDs of u, P lu, and the wavelets themselves, ψ−l. As an aside, figure 10 provides another
potential reason why DDWD uncovers Meyer-like wavelets: the lower spatial localization
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streamwise length scale λx of the wavelets.

(and thus higher spectral localization) of Meyer-like wavelets allows a narrower range
of wavenumbers to be removed from the broadband velocity signal during the energy
optimization.

We assess the self-similarity of the wavelet projections in figure 10 by comparing
their PSDs. Figure 11(a) shows the PSDs when scaled in k by 2l in order to account
for the dyadic progression of scales; they are also normalized to have unit norm. The
self-similarity of P lu is quantified by γla,lb , which is the inner product between the scaled
and normalized PSDs of scale la and lb; figure 11(b) plots this inner product. Just as with
α, we take γ � 0.95 to indicate a high degree of self-similarity. Unlike DDWD wavelets,
the projections are not highly self-similar until a much later stage of l = 6.

Similar to the approach used in § 4.3, we calculate the self-similarity of wavelet
projections simultaneously in stage and wall-normal position by choosing a reference
projection. We choose lref = 8 at the wall-normal position y+

ref = 350 again, and denote
this inner product as γref (l, y); note that this inner product is done in frequency, not
wavenumber, to avoid slight dilations resulting from Taylor’s hypothesis. Figure 12 plots
γref (l, y) for the DDWD, Meyer and db2 bases. DDWD wavelet projections are self-similar
in y from y+ = 350 to y/R = 1 and self-similar in x (across stages) up until wavelets of
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Self-similar, localized structures in turbulent pipe flow

wavelength λx/R = 1, exactly like DDWD wavelets (see § 4.3). The only difference is
the lower bound of self-similarity in x: DDWD wavelets are self-similar starting from
λ+x = 40, while the projections are self-similar starting from λ+x = 450. The reason for
the difference is that by comparing the spectra of the projections, we simultaneously
account for the shapes of the wavelets and the spectral content of the data, which yields
a more stringent criterion for self-similarity. Figures 12(b) and 12(c) show that projecting
the data onto traditional wavelet bases (with pre-defined and exactly self-similar shapes
across scales) leads to overprediction of γref in x by several stages since only spectral
content is taken into account: γref � 0.95 for l ≥ 6 (λ+x ≈ 300) when using Meyer wavelets
and for l ≥ 4 (λ+x ≈ 60) when using db2 wavelets. So even though Meyer wavelets may
closely resemble DDWD wavelets (see figure 6), this result shows one advantage to using
the DDWD basis rather than a prescribed wavelet basis for performing tasks such as
projections.

We now tie the results back to the AEH, which states that eddies in the log layer
grow in size with distance from the wall and are self-similar. The energy-optimality
principle of DDWD allows the shape of the DDWD wavelets and the DDWD wavelet
projections to be each used as a criterion for measuring the self-similarity of the velocity.
Our method defines self-similarity somewhat indirectly – if two quantities (e.g. wavelets)
across different stages are strongly similar (i.e. have an inner product value � 0.95), we
say they are self-similar. The critical (and often-made) assumption is that self-similar
fluctuating velocity signatures arise from self-similar eddies. In x, DDWD shows that
eddies have a high degree of self-similarity from scales of λ+x = 40 (based on the wavelets)
or λ+x = 450 (based on the wavelet projections) up to λx/R = 1, which is the streamwise
extent of LSMs. VLSMs of streamwise extent λx/R = O(10R) may also be self-similar,
but to a lesser degree. In the wall-normal direction y, our results suggest that eddies are
self-similar not just in the log layer but below and well above it.

The self-similarity of the velocity in x may correspond not only with attached eddies,
but also with eddies associated with the energy cascade. In the next section, we determine
the range of stages that accompany two spectral scaling laws: the k−5/3 law related to
the energy cascade, and the k−1 law related (loosely) to self-similarity of wall-bounded
turbulence.

4.5. Energy and spectral scaling laws
The log law for the streamwise turbulence intensity, uu, is a key feature of wall-bounded
turbulence that has been widely observed in experiments and simulations (Hultmark et al.
2012; Winkel et al. 2012; Marusic et al. 2013; Rosenberg et al. 2013; Lee & Moser 2015).
There are three models that have derived this log law. The first is Townsend’s AEH
(Townsend 1976), which was a statistical model that assumed the contributions to the
turbulence intensity from attached eddies were self-similar. The second is the AEM (Perry
& Chong 1982), which was a physical model inspired by the AEH that assigns a shape to
the attached eddies. The third is the spectral AEM (Perry, Henbest & Chong 1986), which
relied on scaling and dimensional arguments to argue that the PSD of u should exhibit a
k−1 power law in an intermediate range of wavenumbers; integrating the PSD gives a log
law for uu. So, the spectral AEM shows that a k−1 power law in the PSD of u is consistent
with the existence of a log law for uu. Transitively, one could then say that the existence
of a k−1 power law would be consistent with the existence of geometrically self-similar
eddies proposed by the AEH.

Here, we attempt to search for a k−1 scaling in wavelet space instead of k-space. As
discussed in § 3.1, the energy contained in a signal is partitioned into the highlighted
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wavelet subspaces in figure 4. The mean energy of our dataset (segments of u) contained
in subspace l is

El = 1
M

M∑
i=1

‖P lzi‖2 = 1
M

M∑
i=1

N/2l−1∑
m=0

∣∣∣〈R2lm(ψ−l), zi

〉∣∣∣2
. (4.4)

For a signal of length N = 2p, El is defined for stages l ∈ [1, p] (the detail subspaces) and
stage pa (the final approximation subspace). At stage pa, ψ−l in (4.4) is replaced by φ−p.
We call the distribution of energy amongst these subspaces the wavelet energy distribution
(WED).

The key difference between the PSD and the WED is that the PSD gives the energy per
unit wavenumber, while the WED gives the energy contained in a range of wavenumbers.
Assuming self-similar wavelets, El gives the energy across a range of wavenumbers
	kl ∼ 2−l (see figure 10). Therefore a quantity analogous to the PSD, which we call the
wavelet power spectrum (WPS), is Ẽl = El/	kl ∼ 2lEl, as used by Meneveau (1991a).
Meneveau’s definition of the WPS was carefully normalized to match the energy contained
in the continuous signal. The normalization does not change how El scales with l, which
is our main interest.

We now discuss the equivalence of power laws between the PSD, WED and WPS.
Since the wavelength λx of a wavelet is proportional to both 2l and 1/k (k being the
central wavenumber of the wavelet), a power law of φuu(k) ∼ k−γ in the PSD will appear
either as Ẽl ∼ (1/λx)

−γ ∼ (1/2l)−γ ∼ 2γ l or El ∼ 2(γ−1)l. The power law scaling for the
WED can also be derived by integrating a power law for the PSD across wavenumbers
corresponding to adjacent stages:

El ∼
∫ 2−(l+1)

2−l
k−γ dk = 21−γ − 1

1 − γ
2(γ−1)l. (4.5)

Henceforth, we work with the WED. Therefore γ = 5/3 and γ = 1 lead to El ∼ 22l/3 and
El ∼ 20 ∼ constant, respectively.

As before, we first discuss the WED results for the velocity signal measured closest to
the wall. Figure 13(a) shows the WED for this signal when El is computed with the DDWD
basis and three traditional wavelet bases. As seen in figure 13(a) and its inset, El is lower
in the DDWD basis until stage l = 14, which is the most energetic (but not the largest)
stage. The reader will note that the WED at stage 18a (which corresponds to the squared
mean) is non-zero despite u having zero mean. The reason is that, like the PSD, the WED
is estimated from an ensemble of segments of u which may themselves have non-zero
mean. By appropriately multiplying the WED of the DDWD basis, the two power laws
in figure 13(a) appear as plateau regions in figure 13(b). Note that the WED plotted on
the right vertical axis in figure 13(b) is the same as that in figure 13(a), except plotted
with a linear scale for the vertical axis to better discern whether a plateau region exists.
A plateau region corresponding to a k−5/3 scaling is not significant, which is common for
measurements close to the wall (Rosenberg et al. 2013; Vallikivi, Ganapathisubramani &
Smits 2015). Nonetheless, one can still say that the inertial subrange occurs around stages
6 through 9, and that the self-similarity results found previously for these stages may also
be attributed to the energy cascade and not solely to the energy-containing motions from
Townsend’s AEH. A plateau region corresponding to a k−1 scaling is even less apparent.

Figure 14 shows El (calculated with the DDWD basis) at all wall-normal positions.
This plot is analogous to a premultiplied PSD spectrogram, where a k−1 scaling would
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Figure 13. (a) Wavelet energy distribution (WED) of the signal measured at y+ = 350 calculated using the
DDWD basis and three known wavelet bases (the green and purple curves overlap). (b) Two versions of the
DDWD WED from (a), one of which is premultiplied. Note, error bars are standard errors.
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Figure 14. (a) Wavelet energy distribution (WED), calculated using the DDWD basis, at all wall-normal
positions. This plot is analogous to a premultiplied PSD spectrogram.

manifest as a flat region. There is a relatively flat region for y+ � 1000 and 12 ≤ l ≤ 15.
In the premultiplied PSD spectrograms of other studies, a flat region appears at a similar
location and is referred to as the ‘outer peak’ (Hutchins & Marusic 2007; Hultmark et al.
2012). In Hutchins & Marusic (2007), they propose that the outer peak corresponds to
the presence of VLSMs, which is consistent with our data since l ≈ 13 corresponds to
λx = O(10R) (see figure 7a). The spectral AEM (Perry et al. 1986) states that the k−1 law
associated with attached eddies exists at length scales in the overlap of the O( y) region
(stages 6 through 11 here) and the O(R) region (stages 11 through 15 here) – therefore,
although a somewhat flat region appears at l ≈ 13 in figure 14, it occurs at length scales
that are too large to be considered a true k−1 law that is associated with attached eddies.

A k−1 power law is rarely observed in experiments and simulations (Nickels et al. 2005;
Rosenberg et al. 2013; Chung et al. 2015). One possible reason for the frequent absence of
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a k−1 power law is that it is only expected to appear when there is enough scale separation
in the flow, which occurs at high friction Reynolds numbers. Marusic & Monty (2019)
estimate that Reτ = O(106) is required to observe even a small region with k−1 scaling,
which is not achievable except in the atmospheric boundary layer. Since our Superpipe data
has Reτ = O(104), a k−1 power law is not expected to appear clearly. Moreover, Hwang,
Hutchins & Marusic (2022) showed that even without the presence of a k−1 power law, the
framework of the spectral AEM can still successfully yield a log law for uu, which is a key
feature of wall-bounded turbulence. Therefore, within the context of the spectral AEM, the
existence of a k−1 power law may not be a necessary feature of wall-bounded turbulence.
As for whether geometric self-similarity is a feature of eddies in wall-bounded turbulence,
a consensus has not been reached. In the next section, we compare the self-similarity
results found by DDWD to the results of other methods.

5. Comparison of ranges of self-similarity

Several turbulent structures have been found and studied in the literature, many of them
displaying self-similarity across a range of scales. Here, we compare the ranges of
self-similarity for these structures and for the localized structures found herein via DDWD.

Hairpin vortices, first proposed by Theodorsen (1952), may be attached eddies. These
coherent structures are theorized to be generated in a bottom-up process (Zhou et al. 1999;
Tomkins & Adrian 2003; Adrian 2007). At the smallest scale, hairpin vortices of height
O(100δν), where δν is a wall unit, are generated in the viscous layer. Then, these hairpin
vortices merge with each other in a pairing process to give larger hairpin vortices, which
in turn form packets of hairpin vortices (e.g. LSMs and VLSMs) with height ∼ 0.3δ to 1δ,
where δ is the turbulent boundary layer (TBL) height. However, this bottom-up generation
process is not universally agreed upon. Flores & Jiménez (2006) showed that the structure
and dynamics of LSMs and VLSMs in the outer region were not affected upon suppressing
the generation of hairpin vortices in the viscous layer. Furthermore, Zhou, Xu & Jiménez
(2022) used correlation methods to show that the accumulation of streaks in the buffer
layer is not necessary for the generation of LSMs. On the other hand, a top-down process
was found in which LSMs induced the spanwise drift of streaks.

Another candidate for attached eddies is the structures related to the SSP (Hamilton
et al. 1995; Waleffe 2001), namely quasi-streamwise vortices and streaks. Although SSP
structures are generally considered to exist only in the buffer layer, Eckhardt & Zammert
(2018) found exact coherent states (ECS; see Kawahara, Uhlmann & van Veen 2012;
Graham & Floryan 2021), corresponding to SSP structures, that exist in the outer region
and are self-similar. Further support of SSP structures being self-similar is found in Hwang
(2015) and Cossu & Hwang (2017), where overdamped large-eddy simulations (LES) were
used to isolate structures at a specific scale. In these simulations, the SSP structures
representing attached eddies were found to be self-similar; note that an ‘attached eddy’
in this case is composed of the dynamically interconnected quasi-streamwise vortices
and streaks. The largest self-similar attached eddy was found to be comprised of a
streaky motion of streamwise extent 15h (h is the channel half-height) and height ∼0.15h
that is surrounded by quasi-streamwise vortices of streamwise extent 3 ∼ 4h and height
0.75h ∼ 1h. This aspect ratio of the self-similar SSP structures is maintained throughout
the outer region all the way down to the viscous layer at O(10δν). The largest streak
component resembles a VLSM, and the largest quasi-streamwise vortices component
resembles LSMs. Furthermore, the overdamped LES results imply that turbulence can
be sustained at each individual scale without any forcing from smaller scales, thus lending
more support against the bottom-up generation of vortices discussed previously.
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An operator-based method called resolvent analysis was shown to produce reconstructed
velocity fields containing self-similar, wall-attached structures (Hwang & Cossu 2010;
Moarref et al. 2013; McKeon 2017). These structures are confined to the log region and
interestingly show a quadratic scaling of streamwise extent with distance from the wall
instead of a linear scaling as proposed in the AEH.

A method to isolate coherent structures that are physically attached to the wall is spectral
coherence analysis (SCA) (Baars, Hutchins & Marusic 2017; Baars & Marusic 2020). SCA
uses the magnitude of the cross-spectrum of a two-point streamwise fluctuating velocity
signal (one measured at the wall, and one measured in the log layer) to measure the
coherence of structures with the wall at each scale 1/k. By arguing that a self-similar
hierarchy of attached structures manifests in a certain pattern in the cross-spectrogram,
it was shown that a TBL flow contained self-similar attached structures for heights 80δν

to 0.71δ and streamwise wavelengths O(1000δν) to ∼10δ. These extents were found to
be universal for a friction Reynolds number range of O(103) to O(106). The aspect ratio
and range of attached-eddy heights found using SCA correspond closely to those of the
self-similar SSP structures found using overdamped LES in Hwang (2015) and Cossu &
Hwang (2017).

Modal decomposition techniques, like DDWD, aim to represent coherent structures with
modes. In Hellström et al. (2016), the radial POD modes of pipe flow were found to be
self-similar for heights 150δν to 0.6R. In Wang, Pan & Wang (2022), 3-D POD modes of a
turbulent channel flow were decomposed into individual eddies called ‘POD eddies’; the
wall-attached POD eddies were found to be physically self-similar for heights O(100δν)

to 0.4h. In He, Wang & Rinoshika (2019), a wavelet decomposition in time (using db20
wavelets) and POD in space was performed on TBL flow, which yielded modes that were
self-similar up to height ∼0.5δ.

Table 1 compares the ranges of self-similarity found by the methods discussed above
to the ranges DDWD finds. Compared to the studies above, our DDWD results suggest
similar ranges of self-similarity of eddies: streamwise extent starting from 40δν (based on
the wavelets) or 450δν (based on the wavelet projections) up to 1R (and possibly O(10R)),
and heights starting from 350δν to 1R. Since the closest measurement of the velocity was
at 350 wall units, the true lower bound for the self-similarity in the wall-normal direction
of the flow experiment may be smaller, as in other studies. Finally, we note that while the
DDWD wavelet projections give a lower bound of streamwise self-similarity that matches
well with other studies, the same cannot be said about DDWD wavelets – one reason could
be that DDWD wavelets are uncovering self-similarity of coherent structures related to the
energy cascade, rather than the AEH, at these smaller scales.

6. Conclusions

DDWD was used to extract energetic, spatially localized structures from experimental
measurements of the streamwise velocity in a fully developed turbulent pipe flow in the
Princeton Superpipe. The structures – which we interpret as being reflective of underlying
eddies – were found to be self-similar across streamwise extents of 40 wall units to one
pipe radius, and across wall-normal positions between y+ = 350 to y/R = 1. We found
that the structures were similar in shape to Meyer wavelets. An analysis of the spectra of
projections of the data onto DDWD subspaces yielded the same bounds for self-similarity
except with streamwise self-similarity starting at a larger length scale of 450 wall units.
This wavelet projection metric might be more accurate since it considers both the shape of
the wavelet (learned from data) and the Fourier content of the data, and since some studies
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(Hwang 2015; Baars et al. 2017) propose the lower bound of streamwise self-similarity to
start at O(100)–O(1000) wall units.

While our bounds for streamwise self-similarity are consistent with the literature,
the large range of wall-normal self-similarity seems contrary to the AEH (Townsend
1976), which states that attached eddies are self-similar only in the log layer; however,
self-similarity of structures well beyond the log layer has also been observed in other
studies (Hwang 2015; Hellström et al. 2016; Baars et al. 2017).

Characterizing attached eddies is an important first step in gaining mechanistic insight
on how they are generated and sustained. In our previous work with HIT data (Floryan &
Graham 2021), DDWD returned self-similar, Meyer-like wavelets for stages corresponding
to the inertial subrange. For the Superpipe data, the inertial subrange corresponds to
stages 6 through 9 (450 wall units to ∼0.3 pipe radii); however, here we see self-similar,
Meyer-like wavelets starting from stage 3 and ending at stage 10 or 11 (note, wavelet
length scales increase by a factor of ∼2 with stage). While it is interesting that DDWD
returns Meyer-like wavelets for two different types of turbulent flows, two caveats should
be made. First, for both datasets, our 1-D wavelets can only speak to 1-D self-similarity of
structures, and thus cannot provide detailed information about 3-D structure (e.g. degree
of isotropy). Second, for the Superpipe data, DDWD cannot differentiate between velocity
structures induced by anisotropic attached eddies and those induced by isotropic eddies
corresponding to the energy cascade – especially since the mechanisms governing these
two types of eddies are probably coupled and complex.

DDWD wavelets are a natural choice for extracting spatially localized, multiscale
velocity structures (induced by eddies) from data. In the search for eddies that are
physically attached to the wall, future efforts will be directed toward applying DDWD to
multi-dimensional data and developing a DDWD analogue of the spectral wall-coherence
method given in Baars et al. (2017) and Baars & Marusic (2020).
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Appendix A. Additional details about use and validation of DDWD

A.1. Details of obtaining an 18-stage DDWD basis
As mentioned in § 3.2.3, one iteration of the optimization problem has a computational
complexity of O(N2 log2 N + N2M), and the number of iterations required for the BFGS
algorithm to converge grows with N. The optimization problem is intractable for N = 218.
To make the problem tractable, we use the fact that wavelets are spatially localized.
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The principal idea behind drastically reducing the computation time of DDWD is to
find shortened wavelets of length Ns � N, and then pad them with zeros until they have
length N. As long as a wavelet of length N is localized within a region of length less than
Ns, it can be accurately represented by a wavelet of length Ns. Reciprocally, a wavelet of
length Ns that is localized can be extended to a wavelet of length N by padding it with
zeros. Since the spatial extent of a wavelet increases with the stage l roughly as 2l, our
idea will seemingly only work for the early stages of the wavelet hierarchy corresponding
to small-scale wavelets. We circumnavigate this issue by working with filters (also called
wavelet generators) instead of directly working with wavelets. In what follows, we provide
a minimal background on how filters are used to produce a wavelet basis (further details
appear in Floryan & Graham 2021), and how we modify the approach to create an
optimization problem that is tractable for large N.

We work in the space R
N . A first-stage wavelet basis for R

N is an orthonormal basis of
the form

{R2mu1}N/2−1
m=0 ∪ {R2mv1}N/2−1

m=0 . (A1)

That is, R
N is spanned by N/2 mutually orthonormal even translates of u1, v1 ∈ R

N . The
two sets in (A1) are respectively bases for the subspaces V−1 and W−1 that appear in
figure 4. The vectors u1 and v1 are called filters, with u1 being equal to the father wavelet
φ−1 introduced in § 3.1, and v1 being equal to the mother wavelet ψ−1. A key point is that
wavelets can be constructed from the filters, and working directly with the filters confers
computational advantages.

The orthonormality conditions for v1 and its even translates can be stated in Fourier
space as ∣∣v̂1(n)

∣∣2 + ∣∣v̂1(n + N/2)
∣∣2 = 2, n = 0, 1, . . . , N/2 − 1, (A2)

where ˆ denotes the discrete Fourier transform (DFT). For a vector z ∈ R
N , z(n) is its

nth component, indexed beginning from zero. The same conditions hold for u1, and
additional conditions are needed to ensure that the even translates of u1 and v1 are mutually
orthonormal. Given a v1 that satisfies (A2), u1 can be constructed from v1 (and vice versa)
so that (A1) is an orthonormal basis.

For N = 2p, one can construct a pth-stage wavelet basis for R
N corresponding to the

p stages of the wavelet hierarchy in figure 4. To do so, we require p sets of filters.
Since the dimension of subspaces V−l and W−l is N/2l, the filters become progressively
shorter at later stages; specifically, ul, vl ∈ R

N/2l−1
. The filter vl at stage l must satisfy the

orthonormality constraints in (A2) (with N replaced by N/2l−1), and ul can be constructed
from vl.

Given the filters, the wavelets at stage l are given by

ψ−l = u1 ∗ U(u2) ∗ U2(u3) ∗ · · · ∗ U l−2(ul−1) ∗ U l−1(vl), (A3)

φ−l = u1 ∗ U(u2) ∗ U2(u3) ∗ · · · ∗ U l−2(ul−1) ∗ U l−1(ul), (A4)

where ∗ denotes convolution and U is the upsampling operator. The upsampling operator
doubles the length of its input and is defined by U(z)(n) = z(n/2) for n even and 0 for n
odd. The N/2l translates by 2l of ψ−l and φ−l span subspaces W−l and V−l, respectively.
Since the wavelets are constructed by repeated convolutions of the filters, localized filters
yield localized wavelets. For traditional wavelets, the stage-l wavelet has a fixed length N
and is localized over a length proportional to 2l. Conversely, the corresponding filters have
varying lengths of N/2l−1 but are localized over constant lengths. We will make use of
this feature for our modified DDWD algorithm.
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In DDWD, we find optimal filters stage by stage. At the first stage, the filters have
length N, making the optimization problem intractable for N = 218. At stage l, the filters
have length N/2l−1, making the optimization problem easier as we move to later stages.
Thus for large N, only the initial stages are intractable, so only the initial stages need to be
modified.

We now discuss the modified DDWD algorithm. Let Z ∈ R
N×M contain an ensemble

of M data vectors of length N. The wavelets (and corresponding filters) at the first stage
will be highly localized, permitting us to use data vectors of length Ns � N to find them.
In this work, we use Ns = 2ps = 27. The first step is to resize Z into Z s ∈ R

Ns×MN/Ns so
that Z s contains the shortened data vectors. Standard DDWD is then applied to Z s to solve
for v1s ∈ R

Ns , which has computational cost O(N2
s log Ns + N2

s (MN/Ns)) per iteration of
the BFGS solver. Moreover, the BFGS solver requires far fewer iterations to converge for
a lower-dimensional problem. Then, the filter v1s is padded with zeros until it has length
N to give the full-length filter v1. In general, padding yields a filter v1 that is slightly
non-orthogonal to its even translates. This is easily remedied by multiplying the Fourier
coefficient pairs that appear in (A2) by the unique positive real number that will make
condition (A2) hold, restoring the orthonormality property. Next, v1 is used to project Z
onto the subspace V−1 to form Z1 ∈ R

N/2×M . The coarsened data matrix Z1 is used to
calculate the filter at the next stage, v2, the same way Z is used to calculate v1. Note that
as we move on to the next stage, the dimension of the coarsened dataset is halved, making
the optimization problem increasingly tractable. We repeat this process recursively until
stage l = p − ps + 1, at which point the coarsened dataset has dimension 2ps without being
shortened. From this stage onward, DDWD without modifications is performed.

In the end, the modified algorithm returns the full p-stage DDWD basis for R
N but

with vastly reduced computing time. The computational savings are enabled by only ever
directly using data vectors of maximal length Ns � N. Crucially, presupposed localization
of the wavelets allows us to use shortened data vectors without distorting the resulting
wavelets, and the validity of this presupposition can be checked after the fact (we have
checked that Ns = 27 is indeed sufficient).

A.2. DDWD validation using synthetic, self-similar signals
To validate the results produced by DDWD, we test whether the algorithm can correctly
recover the shape of a wavelet from a synthetic signal that is a superposition of a known
wavelet across many scales and locations.

We construct the synthetic signal so that it mimics the velocity measurement at y+ =
350 in the Superpipe. The synthetic signal, usynth, has length 224. We generate usynth by
specifying values for its wavelet coefficients and then perform an inverse discrete wavelet
transform. The coefficients corresponding to each wavelet subspace are sampled from a
normal distribution and then normalized such that the energy in each wavelet subspace
matches the WED in figure 13(a) (we choose to match the WED of the Meyer wavelet
in that figure). The energy in stages l ∈ [19, 24] is set equal to zero. We create a dataset
of vectors of length 218 from this signal the same way that we created a dataset from the
Superpipe velocity signal.

First, we test the robustness of DDWD to the strength of the variance penalty parameter
λ2. To measure the ability of DDWD to uncover the wavelet from which the synthetic
dataset is built, we calculate the inner product α

(b1,b2)
l from (4.1) between the DDWD

wavelets and the pre-specified wavelet. As in § 4, α
(b1,b2)
l � 0.95 is considered highly
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Figure 15. Robustness of DDWD to the strength of the variance penalty parameter λ2 for synthetic signals
composed of (a) Meyer, (b) fk6, and (c) db2 wavelets (b1 is the corresponding wavelet basis and b2 is the
DDWD basis). Refer to figure 6(b) for the shapes of these wavelets.

accurate. Figure 15(a) shows that DDWD is accurate for stages 1 through 14 across two
orders of magnitude of λ2 when the synthetic dataset is constructed from Meyer wavelets.

Next, we test the accuracy of DDWD when applied to synthetic datasets constructed
from fk6 or db2 wavelets. Figures 15(b) and (c) show that DDWD is able to accurately
recover the underlying wavelets. Furthermore, the results are extremely robust to the value
of λ2. In what follows, we fix λ2 = 10−4, which is the value that we use when applying
DDWD to the Superpipe data.

Finally, we test the robustness of DDWD to the energy distribution of the synthetic
signal. The synthetic dataset is constructed from Meyer wavelets and matches the WED
of the Superpipe velocity at y/R = 1 (see figure 14). Figure 16 shows that DDWD is
accurate for stages 1 through 14 when the wavelets are enforced to have zero mean (labelled
‘normal’). A zero mean was enforced for the previous tests and for the application to
the Superpipe data. When a zero mean is not enforced, the results are less accurate. The
accuracy begins to decrease past stage 12, which is where the energy peaks. Similarly, the
accuracy in figure 15 begins to decrease past stage 14, which is where the energy peaks for
the corresponding dataset. The results produced by DDWD seem to be most reliable in the
range of scales where the energy monotonically increases with scale, which is probably
related to DDWD minimizing energy scale by scale. As is shown, the results become more
accurate as the amount of data increases. Overall, the validation results here indicate that
DDWD is accurate for all wall-normal positions from stage 1 through stage 14.

A.3. Defining the length scale of a wavelet
There is no consensus for how to measure the length scale of a wavelet, which we denote
by λx. (Note, our definition for λx here is unrelated to the Fourier wavenumber k.) The
most common approach is to calculate the centre wavenumber of the wavelet, kc, which is
the wavenumber corresponding to either the peak or the first moment of the wavelet’s
PSD. However, we find that the centre wavelength, λc = 2π/kc, is usually too small.
For example, the stage-11 wavelet in figure 7(a) has λc ≈ 0.6R, which we find to not be
reflective of the length scale of the wavelet since λc covers approximately one oscillation,
while a wavelet consists of several oscillations.

Our method for measuring λx involves centring an interval about the centre of a wavelet
and shrinking the support of the interval from both ends until it contains only 90 % of
the wavelet’s energy; the length of the interval is λx. The 90 % threshold is not arbitrary.
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Figure 16. Results of DDWD applied to a synthetic dataset generated from Meyer wavelets using the WED of
the Superpipe signal measured at the centreline. Label ‘normal’ indicates that a zero mean was enforced for the
DDWD wavelets. Plotted are (a) wavelets at relevant stages and (b) accuracy at each stage with b1 as the true
basis and b2 as the computed DDWD basis.

We calculate the wavelet energy distribution (WED), which is the energy in the detail
subspaces at each stage, and plot it with stage converted to 2π/λx – a 90 % threshold leads
to the best overlap with the premultiplied PSD. (See more details on the WED in § 4.5.)
As seen with the stage-11 wavelet in figure 7(a), our method for calculating λx = 1.26R
seems to better reflect its length scale than λc.

A.4. Extending DDWD to 2-D and 3-D data
While we only work with 1-D data in this paper, we briefly discuss how DDWD can be
extended to 2-D and 3-D analyses. In 1-D, we maximize the energy in the approximation
subspace (contains low-wavenumber information) at each stage. For each stage in 2-D, we
have two options for the energy maximization. The first option is to maximize the energy in
the 2-D subspace containing low-wavenumber information in both directions. The second
option is to perform 1-D DDWD in each direction, then take a tensor product of the 1-D
bases to get a 2-D DDWD basis.
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