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Connections between resonance and
nonlinearity in swimming performance of a

flexible heaving plate
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We investigate the role of resonance in finite-amplitude swimming of a flexible flat
plate in a viscous fluid. The role of resonance in performance remains unclear for
two reasons: (i) a lack of definition of resonance for the fully coupled fluid–structure
interaction system in a viscous flow, and (ii) the presence of nonlinear effects,
which makes it difficult to disentangle resonant and non-resonant mechanisms
in finite-amplitude swimming. We address point (i) and provide an unambiguous
definition for system resonance by computing global linear stability modes of the
fully coupled fluid–structure interaction system that account for the viscous fluid, the
plate and the coupling between them. We resolve point (ii) by considering high-fidelity
nonlinear simulations of systematically increased amplitude. By comparing the results
for different amplitudes with one another and with the linear stability modes, we
separate linear and/or resonant effects from nonlinear and/or non-resonant effects.
Resonant behaviour is observed over a wide range of plate stiffnesses, with peaks
in trailing-edge motion and thrust occurring near the resonant frequency defined by
the global linear analysis. The peaks broaden and weaken with increasing heave
amplitude, consistent with an increased damping effect from the fluid. At the same
time, non-resonant mechanisms are present at large heave amplitudes. The input
power exhibits qualitatively different dynamics at large heave amplitudes compared
to smaller heave amplitudes, where resonance dominates. Moreover, leading-edge
separation is present for stiff plates at large heave amplitudes, which can drastically
alter the performance characteristics from what one would expect through linear
predictions.

Key words: flow–structure interactions, propulsion, swimming/flying

1. Introduction

The dual aims of understanding fish swimming and developing agile, efficient
underwater vehicles have propelled research on the canonical problem of flow past a
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flapping flexible plate. Experimental (Ramananarivo, Godoy-Diana & Thiria 2011;
Alben et al. 2012; Dewey et al. 2013; Quinn, Lauder & Smits 2014, 2015),
computational (Vanella et al. 2009; Hua, Zhu & Lu 2013; Zhu, He & Zhang 2014;
Zhang, Zhou & Luo 2017), and theoretical work (Alben 2008; Ramananarivo et al.
2011; Alben et al. 2012; Floryan & Rowley 2018) on this problem has revealed
propulsive benefits to flexibility over a range of Reynolds numbers (and for inviscid
flows), plate parameters and amplitudes and frequencies associated with the plate’s
kinematics. Many studies considered actuation frequencies and material parameters
for which the plate exhibits ‘first mode’ flapping; i.e. with the plate shape similar
to that of the first mode of a clamped Euler–Bernoulli beam. However, propulsive
benefits were shown to persist for parameters that led to ‘higher mode’ shapes (Alben
2008; Alben et al. 2012; Quinn et al. 2014; Floryan & Rowley 2018). Because this
canonical problem involves the passive motion of deformable structures, a prevailing
question is the extent to which performance is connected to structural resonance. This
question is the focus of the current work.

There is a lack of consensus in the literature about the role of resonance in
propulsive performance: some investigations have found actuation at or near a
resonant frequency to provide benefits to thrust and/or efficiency (Alben 2008;
Alben et al. 2012; Dewey et al. 2013; Quinn et al. 2014; Zhu et al. 2014; Floryan &
Rowley 2018), whereas others have observed optimality through off-resonant actuation
(Vanella et al. 2009; Ramananarivo et al. 2011; Zhu et al. 2014). Connecting
resonance to swimming performance is challenging for a number of reasons.

First, the most relevant definition of resonance is not agreed upon in the literature
for viscous flows. This lack of consensus is partly due to the fact that resonance
is often defined using an Euler–Bernoulli beam in a vacuum (Vanella et al. 2009;
Kang et al. 2011; Hua et al. 2013). This definition neglects added-mass, viscous and
circulatory effects. The added-mass effect is important for swimmers (as compared
to flyers), which are neutrally buoyant and much thinner than they are long. For
an inviscid flow, Michelin & Llewellyn Smith (2009) computed eigenvalues of
the fully coupled fluid–structure interaction (FSI) system – including added-mass
and circulatory effects – to provide a meaningful definition of resonance. They
demonstrated through nonlinear simulations that peaks in thrust occurred at resonant
frequencies of the FSI system (which could be significantly different from the
vacuum-based resonant frequencies). Floryan & Rowley (2018) also probed the role
of resonance in this inviscid setting through a comparison between eigenvalues of the
FSI system and the linear (infinitesimal-amplitude) dynamics. The authors showed that
actuating at the resonant frequency leads to peaks in thrust and input power of the
linear system. They also demonstrated that the relative growth in magnitude of these
quantities at resonance is comparable, resulting in no gains in efficiency. Moreover,
the authors clarified that circulatory forces affect the eigenvalues and performance of
the FSI system, particularly for low-stiffness swimmers. Such eigenvalue computations
of the FSI system have thus far not been performed for viscous flows, and resonance
has instead been defined using either the aforementioned vacuum scaling or peaks
in the plate response to finite-amplitude actuation (Quinn et al. 2014; Zhang et al.
2017). These approaches leave open questions about the role of resonance, as the
former neglects viscous, added-mass and circulatory effects and the latter provides the
possibility that nonlinearities are playing a role in the observed performance peaks.

This latter effect of nonlinearity provides the second challenge to connecting
resonance to performance, as the vast majority of studies have been performed at finite
amplitudes. A variety of nonlinear mechanisms that impact performance have been
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identified. Michelin & Llewellyn Smith (2009) used inviscid theory and computation
to show that while thrust peaks aligned well with the eigenvalues of the fully coupled
FSI system, input power and efficiency exhibited off-resonant peaks (although this may
be due in part to the fact that the authors did not incorporate instantaneously negative
values of input power in their calculations). At Reynolds numbers O(103–104),
Ramananarivo et al. (2011) experimentally identified superharmonic resonance for
large actuation amplitudes that the authors attributed to nonlinear fluid damping. Zhu
et al. (2014) demonstrated through high-fidelity computations at Reynolds numbers of
O(102–103) that wake asymmetry can occur for certain parameters, and observed that
this effect was largely deleterious for efficiency. Using experimental data at O(104),
Moored et al. (2014) used a local linearization of the wake behind the plate to argue
that optimal efficiency was caused by selecting parameters that were closest to the
wake’s natural frequency. (This study is included in the collection of nonlinear results
because the analysis was performed about a mean flow that was generated through
geometrical nonlinearities in the structure as well as flow nonlinearities such as flow
separation, vortex interactions, etc.) The natural frequency was defined using a spatial
stability analysis of the mean flow in the wake of the swimmer, and chosen to be
the frequency associated with the least stable spatial mode. This analysis reflects the
FSI problem in the sense that the wake data are obtained through flow–swimmer
interactions, although the eigenvalues and modes do not contain direct information
about the swimmer or the FSI coupling. Moreover, the mean flow is distinct from
the true base flow of the system, rendering the notion of stability less clear in this
setting. Finally, Quinn et al. (2015) showed through experiments at Reynolds numbers
of O(103–104) that sufficiently large swimming motions led to flow separation that
adversely affected efficiency.

The goal of the present work is to address (i) the lack of an unambiguous definition
of resonance and (ii) the role of nonlinearities in altering resonant behaviour for
swimmers in a viscous fluid. To achieve these aims, we consider the two-dimensional
flow–plate system at a Reynolds number of 240. First, global linear stability modes
of the fully coupled FSI system are investigated to unambiguously identify the
natural frequencies of the system. Next, to separate the role of resonance from
nonlinearities, high-fidelity nonlinear simulations of increasing amplitude are studied
and compared to the linear stability modes. Resonant and non-resonant mechanisms
driving performance are characterized and, where appropriate, connections are drawn
to previous studies performed at other Reynolds numbers and swimming parameters.

We note that, although this study is performed in the context of swimming, nothing
precludes the approach and methods employed here from being applied to scenarios
relevant to flexible-wing flight, where the physical mechanisms are distinct due to a
greater plate inertia with respect to the flow.

2. Problem set-up and parameters considered
We consider here uniform flow past a passively deformable plate that is heaved

sinusoidally at its leading edge. The fluid is modelled via the two-dimensional
(2-D) Navier–Stokes equations, and the plate is treated as a clamped geometrically
nonlinear Euler–Bernoulli beam. The important dimensionless parameters are the
Reynolds number (Re), dimensionless mass ratio (M) and stiffness ratio (S), and
dimensionless heave amplitude (h0) and frequency ( f ), defined as

Re=
ρf UL
µ

, M =
ρsd
ρf L

, S=
EI

ρf U2L3
, h0 =

A
L
, f =

f ∗L
U
, (2.1a−e)
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®f, µ, U
®s, E, I, L, d

A sin(2πf*t) x

y

FIGURE 1. A schematic of the problem set-up and relevant dimensional quantities.

Re M S h0 f

240 0.01 {0.02, 0.2, 2, 20} {0.001, 0.01, 0.1} 1–3.2

TABLE 1. Range of parameter values considered for the nonlinear simulations. The
frequency is varied in increments of 0.1.

where ρf (ρs) is the 2-D fluid (structure) density, U is the free-stream fluid velocity, L
is the length of the plate, µ is the dynamic fluid viscosity, d is the plate thickness, EI
is the flexural rigidity composed from Young’s elasticity modulus (E) and the second
moment of area (I), A is the dimensional heave amplitude and f ∗ is the dimensional
frequency related to the dimensional angular frequency (ω∗) via ω∗ = 2πf ∗. See
figure 1 for a schematic of the dimensional variables defining the FSI system.

In terms of these dimensionless variables, the heave motion is written as

hLE(t)= h0 sin(ωt), (2.2)

where ω= 2πf is the dimensionless angular frequency and t is the dimensionless time
defined using the convective time scale L/U.

In this study, the Reynolds number and mass ratio are fixed at Re= 240 and M =
0.01, respectively, whereas the stiffness, actuation frequency and heave amplitude are
varied. The moderate Reynolds number is representative of swimming of small fish
and larvae (Webb 1988), and allows for a relatively large sweep of S and f . The small
mass ratio is a representative value for fish, which are neutrally buoyant and much
thinner than they are long. The heave amplitudes are chosen to enable a systematic
comparison of resonant and nonlinear effects in performance. Table 1 summarizes the
range of parameter values considered in this work.

In this article, the response of the plate will often be summarized using the
transverse amplitude of the plate’s trailing edge, hTE(t). Quantities relevant to
swimming performance are the dimensionless thrust, lift and input power, defined
here as

CT(t)=−
Fx

1
2ρf U2L

, CL(t)=
Fy

1
2ρf U2L

, CP(t)=−CL(t)vLE(t)=−
Fy

1
2ρf U2L

dhLE

dt
,

(2.3a−c)
where Fx and Fy are the dimensional drag and lift defined as the horizontal and
vertical forces integrated over the plate, respectively, and vLE = dhLE/dt is the
heave velocity. Performance is measured with respect to the temporal mean of
these quantities – written as CT , CL and CP, respectively – and in terms of some
notion of efficiency (η) defined here as the Froude efficiency: η=CT/CP.
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Connecting resonance to swimming performance 888 A30-5

We note that the Froude efficiency is not a universally agreed upon metric of
efficiency. Barrett et al. (1999) and Maertens, Triantafyllou & Yue (2015) have argued
that this definition can provide unintuitive optima that give preference to motions that
provide small thrust. However, its measure of the mean thrust (propulsive potential)
obtained given some mean input power provides a natural and compelling means to
determine efficiency, and for this reason it remains the standard definition used in
the literature (Triantafyllou, Triantafyllou & Yue 2000; Fish & Lauder 2006; Young
& Lai 2007; Wu 2011; Dewey et al. 2013; Quinn et al. 2014, 2015; Mackowski &
Williamson 2015; Das, Shukla & Govardhan 2016; Floryan et al. 2017; Liu et al.
2017; Floryan & Rowley 2018; Zhou & Mittal 2018; Senturk & Smits 2019; Smits
2019).

3. Numerical methods: nonlinear simulations and global linear stability modes
3.1. Nonlinear simulations

Nonlinear simulations are performed by solving the viscous Navier–Stokes equations
and the geometrically nonlinear Euler–Bernoulli beam equation, and by coupling these
via the no-slip condition on the plate surface.

We define the fluid domain as Ω and the plate surface as Γ . We let x denote the
Eulerian coordinate representing a position in space, X(θ, t) be the coordinate attached
to the body Γ (θ is a variable that parametrizes the surface) and χ(θ, t) be the
displacement of the plate (χ(θ, t)= X(θ, t)− X(θ, 0)). The dimensionless governing
equations are written as

∂u
∂t
=−u · ∇u−∇p+

1
Re
∇

2u+
∫
Γ (θ)

f (X(θ, t))δ(X(θ, t)− x) dθ, (3.1)

∇ · u= 0, (3.2)
ρs

ρf

∂2χ

∂t2
=

1
ρf U2
∇ · σ − f (X), (3.3)∫

Ω(x)
u(x)δ(x−X(θ, t)) dx=

∂χ(θ, t)
∂t

. (3.4)

In the above, equation (3.1) expresses the Navier–Stokes equations in an immersed-
boundary formulation, equation (3.2) is the continuity equation for the fluid,
equation (3.3) represents the structural equations governing the motion of the plate
and (3.4) is the no-slip boundary condition enforcing that the fluid velocity matches
the flag velocity on the flag surface. In (3.3), the time derivative is a Lagrangian
derivative and the stress tensor is the Cauchy tensor in terms of the deformed plate
configuration. The term f that appears in (3.1) and (3.3) enforces the no-slip condition,
and simultaneously drives structural motion and stresses imposed on the flow.

The nonlinear simulations are performed by solving (3.1)–(3.4) using the immersed-
boundary algorithm of Goza & Colonius (2017). The fluid equations are discretized
using a discrete streamfunction formulation (Colonius & Taira 2008), and the plate is
modelled using a corotational finite element formulation (Criesfield 1991). To facilitate
stable computations even in the presence of large structural motions, the nonlinear
coupling between the structure and the fluid is enforced at each time instance;
i.e. the method is strongly coupled. Immersed-boundary methods are well known to
produce spurious computations of the stresses that enforce the fluid–structure coupling.
These unphysical stresses were remedied by Goza et al. (2016), and this remedy is
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888 A30-6 A. Goza, D. Floryan and C. Rowley

incorporated into the FSI algorithm of Goza & Colonius (2017). The FSI solver has
been validated on several flapping flag problems for flags in both the conventional
configuration (pinned at the leading edge) and the inverted configuration (clamped
at the trailing edge) (Goza & Colonius 2017). The solver has also been used to
investigate physical mechanisms driving inverted flag flapping (Goza, Colonius &
Sader 2018).

The simulation parameters used in this work are described in appendix B. To
facilitate studies of steady swimming, for all nonlinear simulations the heave
amplitude was ramped up over a period of twenty convective time units via
hramp

LE (t)= α(t)hLE(t), where α(t) is a scaling factor defined by

α(t)=


0, t 6 5,

6
(

t− 5
15

)5

− 15
(

t− 5
15

)4

+ 10
(

t− 5
15

)3

, 5 6 t< 20,

1, t > 20.

(3.5)

The zero amplitude used for 0 6 t 6 5 is to allow the impulsive start from the fluid
to decay. A shifted and scaled smooth step function (Ebert et al. 2003) is used over
5 6 t 6 20 because of its zero first and second derivatives at t= 5, 20. Analysis from
the nonlinear simulations was performed after t= 20, using data from a minimum of
10 heave periods.

3.2. Global linear stability modes
To facilitate a concise description of the linear stability computations, we express the
nonlinear fully coupled FSI equations in a spatially discrete, temporally continuous
setting as

M ẏ= r(y), (3.6)

where y represents the full state of the system (i.e. all flow and structure variables
required to characterize the full system dynamics). Equation (3.6) contains equations
(3.1)–(3.4). Note the distinction between the matrix M and the mass ratio M. The
matrix M is singular, which reflects the differential–algebraic nature of the governing
equations (due to the no-slip condition on the plate).

The global linear system is defined from the nonlinear system (3.6) by linearizing
about a base state, yb. Writing y= yb

+ yp in (3.6), where yp is a small perturbation
from the base state, and retaining only linear terms in yp leads to the linear system

M ẏp
=Ayp, (3.7)

where A= dr/dy|yb . The specific form of the various terms are provided in Goza et al.
(2018).

The global eigenvalues (λi) that give the natural frequency of the fully coupled
system and the corresponding modes (φi) satisfy the generalized eigenvalue problem
λiMφi = Aφi, i= 1, . . . , n (with n defined as the state dimension). These eigenvalues
and modes are computed by an implicitly restarted Arnoldi algorithm (Lehoucq,
Sorensen & Yang 1998), and are converged to within ||λiMφi − Aφi||2 < 10−8 for all
results shown below.
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Connecting resonance to swimming performance 888 A30-7

4. Resonance for viscous plates: global modes of the FSI system
To provide a framework by which to define resonance in the simulations, we first

present the eigenvalues of the fully coupled plate–fluid system in figure 2 for several
different stiffnesses. The eigenvalues are colour coded by an energy ratio, Er, defined
here as

Er =

∫
Γ (θ)

[
S
(
∂2χ

∂x2

)2

+Mζ 2

]
dθ

∫
Ω(x)
|u|2 dx+

∫
Γ (θ)

S

[(
∂2χ

∂x2

)2

+Mζ 2

]
dθ

. (4.1)

In (4.1), we denote by χ and ζ the y displacement and velocity of the plate, res-
pectively. All other parameters are defined earlier in the text. Physically, equation (4.1)
provides a ratio of the potential and kinetic energy associated with the plate to the
total system energy (potential and kinetic plate energy plus kinetic energy in the fluid).
Note that the computation of the bending strain assumes the plate undergoes small
strains, which is appropriate in this linear setting. All energies are computed from
the eigenvector associated with the eigenvalue being considered. Note that because the
denominator of the energy ratio is the total system energy, Er 6 1.

Also provided for each stiffness in figure 2 is the eigenvector associated with the
largest value of Er. The eigenvector is plotted using the fact that the time response
associated with a given eigenvalue-eigenvector pair (λj,φj) is given by the real part of
φjeλjt. The insets contain plots of this response at the time t for which the trailing-edge
displacement is maximal. Note that the there is no amplitude scale in the insets, as
the amplitude is irrelevant in this linear setting.

To explain the plots in figure 2, we first consider the specific stiffness S = 20 in
figure 2. The top-left plot of the figure shows that there is one complex eigenvalue
pair associated with a large value of Er, and the inset demonstrates that the associated
eigenvector has a plate shape reflective of the first mode of an Euler–Bernoulli beam.
(There is also a zero frequency mode of non-negligible energy that coincides with
divergence of the plate in a given transverse direction, depending on the nature of
the perturbation. This mode is not expected to be significant in swimming, which
inherently involves flapping behaviour of non-zero frequency.) There is minimal
response in the fluid for this eigenvector (also shown in the inset). Despite the
similarity of plate shape to the first mode of an Euler–Bernoulli beam, note that the
frequency is smaller by two orders of magnitude than for that of an Euler–Bernoulli
beam in a vacuum. This discrepancy attests to the significant role of added mass
and viscosity in defining resonance for plates of low M values. In addition to this
structure-driven mode, there are several flow-driven modes that correspond to a small
value of Er. Indeed, these modes are similar to those associated with flow past a
rigid, stationary body; cf., figure 15 in appendix A.

As the stiffness is decreased from S = 20, the structure-driven mode decreases in
frequency and there is an increasingly pronounced wake response as the eigenvalue
approaches those of the flow-driven modes. For S= 2 and S= 0.5, the proximity of
the structure- and flow-driven modes leads to multiple eigenvectors with a non-trivial
value of Er. By S= 0.2, the mode reminiscent of the first mode of an Euler–Bernoulli
beam is associated with a much smaller value of Er. Moreover, a new structure-driven
mode appears that is similar to the second mode of an Euler–Bernoulli beam (though
again, the natural frequency is different from that of an Euler–Bernoulli beam in a
vacuum by two orders of magnitude). As occurred previously, the mode is initially
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FIGURE 2. The main figures provide the first several eigenvalues with largest growth
rate for nine different stiffnesses over the frequencies [−4, 4]. The markers are colour
coded by the ratio, Er (see main text for details). For each stiffness, the eigenvalue
with corresponding eigenvector of largest Er value is circled. The insets illustrate the
response of the eigenvector associated with the circled eigenvalue at the time for which
the trailing-edge displacement is maximal (the sub-insets convey zoomed-in versions of the
plate shape). The eigenvectors are scaled to have unit 2-norm. Contours are of vorticity,
plotted in 20 increments from −0.05 to 0.05, with white indicating positive and black
indicating negative vorticity.

associated with isolated wake structures, though as the stiffness is decreased the
eigenvalue approaches those of the flow-driven modes and the mode’s wake becomes
progressively expansive. Finally, for S = 0.02, there is no signature of a mode
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reminiscent of the second mode of an Euler–Bernoulli beam with a large value of
Er. Instead, a new structure-driven mode appears that resembles the third mode of an
Euler–Bernoulli beam and has a wake structure localized near the plate. One expects
that the pattern would persist for lower stiffnesses, with the eigenvalue approaching
those of the flow-driven modes (corresponding to a more extensive wake signature),
and eventually disappearing and giving way to a higher-order structure-driven mode.
(Although for very low stiffnesses, one would expect flutter modes to appear and
affect the trends described in the main text. The appearance of these flutter modes
was, for example, seen by Floryan & Rowley (2018) for inviscid flows.)

The remainder of this article will investigate the extent to which this resonant
behaviour plays a role in finite-amplitude swimming. The nonlinear results will show
that for a given stiffness, the ‘resonant response’ that leads to performance peaks
coincides with actuating at a frequency near the natural frequency associated with
the mode for which Er is largest. Actuating at frequencies corresponding to the other
eigenvalues is demonstrated to have a negligible effect on performance. At the same
time, the results will show that there are parameters for which nonlinear mechanisms
obscure this resonant behaviour. An example of such a nonlinear process is the
vortex shedding and interaction that is a key feature of finite-amplitude swimming.
This effect is notably absent in several of the modes depicted in figure 2, where
vorticity is isolated near the plate.

5. Connections between nonlinearity and resonance
We now compare results from nonlinear high-fidelity simulations for S= 0.02, 0.2,

2, 20 to the resonant behaviour provided by the linear stability modes described in
§ 4. Results are first presented at relatively large amplitudes relevant to fish swimming,
h0 = 0.1. Connections between this large-amplitude behaviour and resonance are then
drawn by considering nonlinear simulations of increasing amplitude.

5.1. General observations for large-amplitude motions
Figure 3 provides various quantities related to performance. Some features of these
performance plots appear reflective of resonant behaviour. For example, for every
stiffness except the stiffest case (S = 20), there are peaks in trailing-edge amplitude,
mean thrust and efficiency at roughly the natural frequency of the global linear system
(though note that in the case of mean thrust, the peak near the resonant frequency is
only a local maximum for S= 2).

However, there are also differences between the nonlinear and linear results that
suggest the presence of non-resonant mechanisms. First, even when there are peaks
in trailing-edge amplitude, mean thrust and efficiency for a given stiffness, the peaks
occur at slightly different frequencies for each quantity. For example, for S = 2 the
maximum trailing-edge amplitude, mean thrust and efficiency occur at f = 1, 1.3
and 1.1, respectively. Second, the swimming performance for S = 20 is entirely
different from what one would expect from resonance-based arguments; e.g. there
are broad peaks in maximum trailing-edge amplitude and efficiency, with maxima
occurring at f = 2.4 and f = 2.1, respectively (well below the resonant frequency of
f ≈ 3.1). Third, for S= 2, there is an increase in maximum trailing-edge amplitude and
mean thrust for f > 2.4 despite the fact that there are no eigenvalues corresponding to
this frequency range (or to a mode at higher frequency up to f = 4) for this stiffness.

Connections to and distinctions from resonant behaviour are also suggested by
the snapshots of large-amplitude swimming presented in figure 4. One connection
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FIGURE 3. Maximum transverse displacement of the trailing edge (a), mean thrust
(b), mean input power (c) and Froude efficiency (d) versus dimensionless frequency, f ,
obtained from the nonlinear simulations for h0 = 0.1. Each plot contains four separate
colours corresponding to four different stiffnesses: S= 0.02 (black), S= 0.2 (brown), S= 2
(orange) and S=20 (yellow). The dashed vertical lines correspond to the natural frequency
defined using the imaginary part of the global eigenvalues presented in § 4.

to the resonant predictions is that near the resonant frequency, the plate shape in
the nonlinear simulations resembles that of the global mode. However, the vortex
dynamics in the nonlinear simulations is distinct from that observed in the global
linear analysis: the finite-amplitude motion of the plate generates vortices at the
leading and trailing edges, and these vortices subsequently interact in a manner not
seen in the linear setting.

These observations motivate several questions about the relevance of resonance
in large-amplitude swimming. First, for stiffnesses where there are performance
peaks near the natural frequency of the global linear system, how similar is the
large-amplitude dynamics to the linear stability modes? That is, to what extent is
resonance responsible for optimal performance at finite amplitudes? Second, what
dynamics is associated with the boosts in trailing-edge amplitude, mean thrust and
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FIGURE 4. Snapshots during a flapping period, with each row containing a different
stiffness and each column containing a different frequency. In each plot, the snapshot
corresponds to the time instance where the plate’s leading edge is at its negative peak.

mean input power at high frequency for S = 2? Finally, for S = 20 where there is a
noticeable departure from resonance-based performance predictions, what dynamics is
associated with disappearance in performance peaks? We probe these questions in the
remainder of this section by considering nonlinear simulations of increasing heave
amplitude, h0 = 0.001, 0.01 and 0.1.

5.2. Probing the effect of increasing nonlinearity
In this section, we consider stiffnesses S = 0.02, 0.2, 2 and 20 separately. For each
stiffness, we investigate the effect of increasing the heave amplitude from h0= 0.001,
where the linear analysis of § 4 is relevant, to h0 = 0.1, which better represents fish
swimming. Through this systematic variation in amplitude, we identify connections to
and distinctions from resonance in swimming performance at finite heave amplitudes.

To give context for the results below, we note that for the majority of parameters
considered, the plate–fluid system exhibits limit-cycle dynamics (exceptions to this
will be discussed further below). Figure 5 depicts time traces of various quantities
for S = 0.2 and three different frequencies, which are qualitatively representative
of the typical behaviour of the system. To enable a meaningful comparison across
frequencies, time is shifted so that t = 0 coincides with the instance when the
leading-edge displacement has maximal derivative (i.e. velocity), and scaled by T so
that the leading-edge motion has a period of unity. Note that the thrust and input
power have twice the frequency of the trailing and leading-edge displacement. This
fact is intuitive, since one would expect a peak in thrust or input power for both the
top and bottom portions of a flapping cycle.

In the shifted and scaled representation of time, any of the quantities in figure 5
can be written as aw((t + ϕ)/T), where a is the peak amplitude of the function,
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FIGURE 5. Time traces of various quantities for S= 0.02, h0= 0.1. Only the f = 3.2 curve
is visible in the plot of hLE, as the prescribed leading-edge kinematics are identical. The
limit-cycle behaviour observed here is indicative of the plate–flow behaviour except for
f > 2.4 at S= 2.

hTE CT CP

a
max(hTE)

h0

max
(
CT −CT

)
h2

0

max
(
CP −CP

)
h2

0

TABLE 2. Definition of the oscillation amplitude, a, for the quantities hTE, CT , CP.

w(t/T) is a periodic function (with a period of unity for hTE and hLE and of one
half for CT and CP) constructed so that w(0) corresponds to the signal having a
maximal derivative value and ϕ is the phase shift to account for the fact that the
signal does not, in general, exhibit its maximal derivative at t/T= 0. The expression is
left in terms of a generic periodic function w(t/T), since the signals are not generally
sinusoids for every frequency and stiffness considered (due to a non-zero offset and
the possible presence of additional harmonics). The convention of w(0) coinciding
with the time instant for which the derivative dw/dt is maximal is used to enable
an intuitive interpretation of ϕ: ϕ= 0 corresponds to motion that is in phase with the
prescribed leading-edge motion characterized by hTE(t). The prevalence of the periodic
behaviour in this FSI system forms the basis for much of the analysis below.

To facilitate a comparison across the wide range of heave amplitude, frequency and
stiffness parameters considered, the limit-cycle dynamics will be succinctly represented
below in terms of its amplitude, a, and phase shift, φ. This limit-cycle dynamics
disappears for S= 2 and f > 2.4, rendering the amplitude–phase representation of the
system dynamics inappropriate (as will be discussed in § 5.2.3).

5.2.1. Minimal stiffness: S= 0.02
Here, we study the minimally stiff case (S= 0.02) in more detail. Figure 6 shows

the phase shift, ϕ, and amplitude, a, associated with the periodic signals hTE,CT, and
CP at a given frequency. Note that the phase shift exhibits a discontinuous jump at
ϕ= 1 for hTE and ϕ= 0.5 for CT and CP, which is the period (in terms of the scaled
time t/T) of each of these quantities.

To enable a meaningful comparison across the various heave amplitudes, the
amplitude, a, of a quantity is scaled as described in table 2. If the dynamics was
entirely linear, the scaled amplitudes in table 2 would not change with increasing
heave amplitude h0. This fact is readily apparent for the trailing-edge displacement,
which scales linearly with h0 under linear dynamics; the quadratic scaling of CT and
CP under linear dynamics is explained in, e.g. Wu (1961), Floryan & Rowley (2018).
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FIGURE 6. The amplitude (a–c), a, and phase shift (d–f ), ϕ, of the trailing-edge
displacement (a,d), thrust (b,e) and input power (c,f ) versus frequency for S = 0.02.
Each plot contains three sets of markers corresponding to different heave amplitudes. To
facilitate a comparison of the maximum amplitude across different values of h0, a is scaled
as described in table 2. The vertical line denotes the natural frequency for this stiffness.

Figure 6 demonstrates that resonance plays a significant role in swimming
performance for h0 = 0.001, where the swimming behaviour is essentially linear.
In particular, f = 2.6 (the frequency nearest to the natural frequency of the mode that
maximizes the energy ratio Er) is associated with the largest peaks in trailing-edge
amplitude, thrust and input power. It is intuitive from the linear stability analysis
of § 4 that actuating near this natural frequency leads to maximal energy put into
the plate, resulting in the largest displacements and forces on the plate. We note
that there is a local maximum in trailing-edge amplitude at f = 1, which is near the
frequency range associated with the flow-driven modes. Yet, consistent with the fact
that these modes correspond to low values of Er, these large plate displacements do
not coincide with peaks in performance.

It is also clear from figure 6 that the linear dynamics associated with h0 = 0.001
largely persists at the larger heave amplitude of h0= 0.01. The largest peak in trailing-
edge amplitude, thrust and input power continues to occur at f = 2.6. Moreover, the
dynamics of a given quantity at h0 = 0.01 is of extremely similar phase to that at
h0 = 0.001. At the same time, nonlinear effects are also apparent: the peak value of
a for CT and CP is smaller than that associated with h0 = 0.001.

For h0 = 0.1, small peaks in the amplitude a persist for hTE and CT near – but no
longer at – the natural frequency. The slight change in the frequency corresponding
to maximal trailing-edge amplitude and thrust does not preclude the possibility of
resonant-type behaviour; that is, a modified natural frequency could occur due to finite-
amplitude effects of added mass and viscosity. At the same time, the smaller, broader
peaks in trailing-edge amplitude and thrust at h0= 0.1 compared with h0= 0.001, 0.01,
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FIGURE 7. Maximum positive circulation in the plate’s wake versus frequency for S=0.02
and various heave amplitudes (see main text for details on how the maximum circulation
is defined). The vertical dashed line depicts the resonant frequency at this stiffness.

as well as the qualitatively different phase behaviour at high frequencies for h0= 0.1,
suggest non-resonant mechanisms.

Whereas the trailing-edge displacement and thrust appear to exhibit a mixture
of resonant and non-resonant behaviour for h0 = 0.1, the input power is markedly
different in both a and ϕ at this higher heave amplitude. The phase is roughly
constant for h0 = 0.1, and the maximum amplitude of the input power does not
exhibit a peak.

To continue to explore the role of resonance, we show in figure 7 the maximum
circulation in the wake of the plate. The positive wake circulation, γ p

wake, is defined as
the integrated positive vorticity within a rectangle defined by 16 x6 5/3 and −1/26
y 6 1/2 (where the leading edge of the plate is positioned at (x, y) = (0, 0) when
hLE = 0). The maximum circulation, max(γ p

wake), is defined as the maximum value
of γ p

wake over 5 flapping periods. The analogous plots associated with the negative
circulation are nearly identical to the ones provided here for the positive circulation.
The figure demonstrates that, for all amplitudes, the maximal wake circulation occurs
near the resonant frequency associated with the mode of largest Er value. The fact
that maximal circulation occurs near the resonant frequency for all heave amplitudes
suggests that, at this stiffness, resonance plays a role in the circulation formed in
the plate’s wake. The mean thrust is maximal at this same frequency (cf., figure 3),
indicating that this connection between resonance and circulation extends to mean
swimming performance.

To summarize the results for this stiffness, the role of resonance is less straight-
forward than what one might conclude from figure 3, even for S=0.02, which exhibits
peaks near the natural frequency for several mean performance quantities. The thrust
dynamics is different at large heave amplitudes from its small-amplitude counterparts,
particularly at high frequencies. Moreover, the input power transitions to a qualitatively
different dynamics at large amplitudes. Together, these facts indicate that non-resonant,
nonlinear effects play a non-trivial role in performance, though the persistence of
a peak in mean thrust and maximal wake circulation near the resonant frequency
suggests that features of resonance may continue to be important in finite-amplitude
swimming at this stiffness. Regarding this resonant phenomenon, the general trend is
that the peaks broaden and shorten as heave amplitude is increased. This could be
reflective of a number of phenomena not accounted for by the global linear analysis
and small-amplitude simulations, including added-mass effects from finite-amplitude
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FIGURE 8. Analogue of figure 6 for stiffness S= 0.2.

heaving or formation and interaction of vortical structures along the plate’s length and
in the plate’s wake. Interestingly, introducing damping into a spring–mass system has
a similar effect of broadening and weakening the frequency response of the system,
and it is possible that the aforementioned effects could be providing similar damping
mechanisms. Probing this possibility in more depth is left to future study.

5.2.2. Moderate stiffness: S= 0.2
We now consider increasing the stiffness to S = 0.2. Figure 8 shows the phase

and maximum amplitude associated with hTE, CT and CP at a given frequency. As
was observed for S = 0.02, the figure suggests the presence of both resonant and
non-resonant mechanisms.

For small heave amplitudes (h0 6 0.01), the dynamics appears to be primarily linear:
the behaviour of a and φ is similar for all three quantities (though the smaller peaks
in amplitude for h0=0.01 than for h0=0.001 demonstrate the appearance of nonlinear
mechanisms). Moreover, resonance appears to play the primary role for these values
of h0, as there are peaks in all three quantities near the resonant frequency associated
with the mode of largest Er value.

For h0 = 0.1, either global or local peaks appear in all quantities near the resonant
frequency. Moreover, the phase associated with the thrust is similar to that of the
lower heave amplitudes near the resonant frequency. These facts suggest a non-trivial
role of resonance in dictating performance of finite-amplitude swimming at this
stiffness. At the same time, the peaks are broader and smaller at this larger heave
amplitude, and the phase behaviour of all quantities reflect significant differences
from the smaller heave amplitude cases (where resonance dominates). Moreover,
while there is a local peak in a for the input power, the overall shape of the curve
is different from those associated with h0 = 0.001, 0.01.
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FIGURE 9. Analogue of figure 7 for stiffness S= 0.2.
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FIGURE 10. Analogue of figure 6 for stiffness S = 2. The open markers for h0 = 0.1,
f > 2.4 correspond to aperiodic dynamics for which this amplitude–phase analysis is not
valid.

To establish connections between vortex formation and performance, we provide in
figure 9 the maximum wake circulation (see the text surrounding figure 7 for details
on how this is defined) as a function of frequency for the various heave amplitudes.
As with S= 0.02, the maximum wake circulation occurs near the resonant frequency
for all heave amplitudes. The maximum mean thrust also occurs near this frequency,
which again suggests that resonance could be connected to maximal mean thrust
production at this stiffness.

5.2.3. Moderate stiffness: S= 2
Figure 10 provides the phase and maximum amplitude associated with hTE,CT and

CP at a given frequency for a stiffness S= 2. The figure indicates that the dynamics is
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FIGURE 11. Time traces of various quantities for S= 2, h0 = 0.1. Limit-cycle behaviour
is observed for f = 1.4, but not for f = 2.6, 3.2. This illustrates the presence of nonlinear,
non-resonant mechanisms for f > 2.2.

essentially linear for the small heave amplitudes h0=0.001,0.01 (both a and ϕ exhibit
similar behaviour at these smaller values of h0), and that resonance continues to play
a primary role for these values of h0 (resonant peaks are present in all quantities).
However, the behaviour of a for CP suggests that there are non-resonant mechanisms
even in this linear regime: the maximum value of a occurs at f =3.2 – well away from
the natural frequency for this stiffness. (The global maximum may occur at a higher
frequency, as the amplitude is still increasing at f = 3.2, although in either case this
is away from the natural frequency.)

For the largest heave amplitude, h0= 0.1, there are both similarities and differences
to the cases with smaller heave amplitudes. The main similarity is that the thrust
and trailing-edge amplitude exhibit either a local or global peak near the resonant
frequency corresponding to the mode with largest Er value. This again points to
resonant features present in the dynamics exhibited by this stiffness, particularly for
low frequencies.

There are also several differences between the large heave amplitude dynamics
and that of smaller amplitude. First, the phase associated with h0 = 0.1 is different
for all quantities to that associated with smaller heave amplitudes. An even more
conspicuous difference is the significant variations in a for hTE and CT when f > 2.4.
This variability is due to the fact that the signals are not periodic at this stiffness
for these frequencies, rendering this amplitude–phase representation inappropriate.
Figure 11 provides time traces of hTE, CT and CP for f = 1.4 (for which the quantities
exhibit periodic behaviour), and for f = 2.6 and 3.2 (for which the quantities are
aperiodic). This aperiodic dynamics is consistent with the pronounced leading-edge
vortical structures (and associated separation at the leading edge) and asymmetric
wake structures observed in figure 4 for S = 2 at f = 2.4 and 3. These nonlinear,
non-resonant mechanisms cause a significant departure from the essentially linear
dynamics displayed in figure 10 for small heave amplitudes.

To connect performance to wake circulation, we present in figure 12 the maximum
circulation in the wake of the plate (see the text surrounding figure 7 for details on
how this is defined) as a function of frequency for the various heave amplitudes. For
h0 = 0.001, 0.01 the maximum circulation is observed near the resonant frequency
associated with the mode for which Er is maximal. For the larger heave amplitude
of h0 = 0.1, there is a local peak near this resonant frequency before the maximum
circulation increases significantly at higher frequencies.
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FIGURE 12. Analogue of figure 7 for stiffness S= 2.

Together, the results contained in figures 10–12 indicate that for large-amplitude
swimming at S = 2, there is a distinction between low frequencies ( f < 2.4), for
which leading-edge separation is sufficiently small, and high frequencies ( f > 2.4), for
which leading-edge separation and vortex dynamics are prominent. At low frequencies,
the results are analogous to those found for the lower stiffnesses. Many features of
linear dynamics persist at large heave amplitudes, and thrust peaks are associated
with actuating at the resonant frequency to obtain maximal wake circulation. At high
frequencies, the results are substantially different from those associated with the more
flexible plates. There is a prominent leading-edge vortex dynamics that is associated
with significantly larger thrust peaks and wake circulation than what is created by
resonant mechanisms at lower frequencies.

5.2.4. Maximal stiffness: S= 20
We now turn to the stiffest case considered, S= 20. Figure 13 provides the phase

and maximum amplitude associated with hTE,CT, and CP at a given frequency. Note
that for all results shown in this subsection (corresponding to S= 20), the frequency
range is f ∈ [1, 3.5] rather than f ∈ [1, 3.2]. This is done to provide enough data points
beyond the natural frequency of f ≈ 3.1 to enable meaningful conclusions about the
role of resonance to be drawn.

As was observed for the more flexible cases, resonance appears to be the dominant
indicator of performance at the smallest heave amplitude (h0 = 0.001), with peaks in
a occurring for all quantities near the natural frequency associated with the linear
stability mode of largest Er value. These resonant peaks largely persist at the larger
value of h0 = 0.01, and the similar phases across h0 = 0.001 and h0 = 0.01 suggest
that the dynamics remains primarily linear up to this larger amplitude.

The trends at the larger heave amplitude are similar to those observed for the
other stiffness values. The peaks broaden and weaken significantly compared with
the smaller heave amplitudes, but persist near the resonant frequency. In addition, the
phase behaviour is distinct from that corresponding to the lower heave amplitudes.

In figure 14, we again probe the connection between thrust and wake circulation by
showing the maximum wake circulation (see the text surrounding figure 7 for details
on how this is defined) as a function of frequency for the various heave amplitudes.
For h0 = 0.001, 0.01 and 0.1, the maximum circulation is observed near the resonant
frequency associated with the mode for which Er is maximal (although it is difficult to
arrive at concrete conclusions about the role of resonance in wake circulation at this
stiffness because the resonant frequency is near the maximal frequency considered in
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FIGURE 13. Analogue of figure 6 for stiffness S= 20.
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FIGURE 14. Analogue of figure 7 for stiffness S= 20.

this study). Irrespective of the connection to resonance, the frequency associated with
maximal wake circulation is also associated with maximal mean thrust (cf., figure 3),
as was observed for more flexible plates.

Finally, we note that for h0 = 0.1 at this larger stiffness, the plate–fluid system
contains significant leading-edge vorticity that indicates separation; cf., figure 4. This
leading-edge vorticity is most pronounced for S = 20 when 1.8 6 f 6 2.4. From
figure 3, it is clear that these frequencies coincide with small increases in efficiency.
Moreover, unlike for S = 2, the separated flow behaviour is not associated with
aperiodic system dynamics for S= 20, nor does it correspond to substantial changes in
performance. This demonstrates that leading-edge separation and vorticity generation,
while not accounted for in the linear analysis, do not necessarily indicate significant
changes in performance from what one would predict through resonance-based
arguments.
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6. Conclusions and connections to other work

In this article, we investigated the role of resonance in finite-amplitude swimming
of a flexible flat plate in a viscous fluid (Re= 240). First, we unambiguously defined
resonance using linear stability modes of the fully coupled fluid–structure interaction
system. These modes represent eigenvalues and eigenvectors that account for the
viscous fluid, the plate and the coupling between them. The eigenvalues associated
with modes that maximized the energy put into the plate, quantified in terms of
an energy ratio (Er), were shown to provide an appropriate measure for system
resonance.

We then probed the connections between finite-amplitude swimming and resonant
behaviour through high-fidelity nonlinear simulations of systematically increased
heave amplitude. By comparing the results for different heave amplitudes with one
another and with the linear stability modes, connections to and distinctions from
resonant behaviour were established for finite-amplitude swimming over a wide range
of stiffnesses (S = 0.02, 0.2, 2, 20). The primary observations of this article (with
connections to other work provided where appropriate) are:

Small heave amplitudes. For sufficiently small heave amplitudes (h0 = 0.01 in our
studies) the dynamics was similar across heave amplitude, suggesting primarily linear
behaviour. Beyond this, peaks in trailing-edge displacement, thrust and input power
all occurred near the resonant frequency corresponding to the mode with largest Er

value. The connection of performance to this energy ratio can be intuited by observing
that the mode of largest Er value contains the largest per cent energy in the structure.
Thus, actuation that excites this mode will produce the maximum response (and energy
put into) the swimmer. Moreover, the relationship between performance and the global
linear eigen-pairs of the FSI system indicates that resonance is a dominant contributor
to performance in this small-amplitude regime.

Large heave amplitudes. At larger heave amplitudes more reflective of fish swimming
(h0 = 0.1 in our studies), the results indicated that both resonant and non-resonant
mechanisms played a role.

Regarding resonant behaviour, different plate shapes were observed depending on
the plate stiffness and heave frequency, and these shapes were consistent with the
shapes predicted by the global linear analysis. More flexible plates were more likely
to exhibit shapes that are reminiscent of higher modes of an Euler–Bernoulli beam.
This phenomenon was also observed by Quinn et al. (2014) through experiments at
higher Reynolds numbers.

In addition, peaks in trailing-edge motion and thrust persisted near the resonant
frequency for all stiffnesses considered, with the general trend that the peaks
weakened, broadened and occurred at slightly shifted frequencies from the resonant
frequency identified through the linear stability analysis. This distinction from the
linear behaviour can be due to a number of phenomena, including added-mass
effects from finite-amplitude heaving, leading-edge separation and nonlinear vortex
generation and interaction not present for small-amplitude kinematics. Interestingly,
the broader and weaker frequency response is consistent with the response of a
spring–mass system subjected to damping. The aforementioned nonlinear mechanisms
could therefore be providing an effective damping mechanism, which in turn could
be related to the nonlinear fluid damping effect argued by Ramananarivo et al. (2011)
(though the authors considered larger mass ratios and heave amplitudes than those
of this study that almost certainly led to differences in the detailed system response).
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Clarifying the specific nonlinear mechanisms that dictate the broader, shorter peaks
associated with finite-amplitude heaving is an avenue for future research efforts.

We note that connections to resonance have been argued for at higher Reynolds
numbers as well. Quinn et al. (2014) identified peaks in thrust and efficiency at
specific frequencies from experimental data at Re ∼ O(104), and used this to claim
that resonance was a contributor to performance. Our results clarify that performance
peaks in finite-amplitude swimming are indeed connected to resonant behaviour at
lower Reynolds numbers. This observation indicates that performance peaks observed
at higher Reynolds may also be related to resonance of the FSI system, although a
global stability analysis at these higher Reynolds is necessary to make conclusive
statements.

Despite these peaks near the resonant frequency, non-resonant behaviour was
observed as well. For all stiffnesses considered, the input power exhibited a
qualitatively different amplitude and phase response from the essentially linear
dynamics at lower heave amplitudes. In addition, leading-edge separation (and
associated vorticity generation) was present for the larger stiffness values, S = 2, 20.
These cases were associated with either marginal improvements (for S = 20,
1.8 6 f 6 2.4) or substantial decreases (for S = 2, f > 2.4) in efficiency. This is
consistent with the observations of Quinn et al. (2015) that leading-edge separation
was generally deleterious to efficiency. Quinn et al. (2015) used experiments at
Reynolds numbers of O(103–104) to arrive at their conclusions, which suggests
potential extensions of our conclusions at lower Reynolds numbers to higher Reynolds
numbers.

We also note that leading-edge separation corresponded to an asymmetric wake. Zhu
et al. (2014) did an extensive study of the parameters that led to asymmetric wake
responses, and arrived at the conclusion that the wake circulation had to be above
a threshold value for asymmetry to occur. Our studies suggest that sufficiently large
leading-edge vorticity is another prerequisite.

Irrespective of the connections to resonance, the maximal mean thrust in large-
amplitude swimming occurs at or very near the frequency for which the wake
circulation is maximized. This was observed for all stiffnesses considered in this
study, and is consistent with the observations of Moored et al. (2014), who used
a local linear analysis of the wake to demonstrate that performance gains were
obtained by actuating at a frequency that maximally destabilized the wake. Moored
et al. (2014) considered experimental data of O(104), which again indicate that there
may be extensions of the conclusions drawn here for the moderate Reynolds number
of 240 to higher Reynolds numbers.
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Appendix A. Linear stability modes for a rigid stationary plate
Figure 15 provides an analogue to figure 2 for a rigid, stationary plate (absent fluid–

structure coupling). The eigenvalue locations and mode shapes of these rigid-body
modes are similar compared with the FSI modes of low Er values in figure 2. These
observations suggest that the FSI modes with low Er values are wake instability modes
that are not associated with significant fluid–structure interaction.
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FIGURE 15. Left: eigenvalues associated with flow past a rigid stationary plate;
i.e. without fluid–structure interaction. Note that all eigenvalues in the figure have
corresponding eigenvectors with zero value of Er since the plate is rigid. Middle and right:
eigenvectors associated with the four circled eigenvalues plotted at a time instance during
the response given by the real part of φjeλjt. The eigenvectors are scaled to have unit
2-norm, and contours are plotted in 20 increments from −0.05 to 0.05.

Appendix B. Simulation parameters and grid convergence study
The flow equations are treated using a multidomain approach: the finest grid

surrounds the body and grids of increasing coarseness are used at progressively larger
distances (Colonius & Taira 2008). In all computations performed for this article, the
domain size of the finest sub-domain is [−0.2, 1.8]× [−0.5, 0.5] and the total domain
size is [−15.07, 16.67] × [−7.87, 7.87]. The grid spacing on the finest domain is
1x = 2/480 ≈ 0.0042 and the grid spacing for the flag is 1s = 21x ≈ 0.0083. The
time step is 1t= 0.00015, which gives a maximum Courant–Friedrichs–Lewy number
of approximately 0.2.

The suitability of these parameters is demonstrated in this appendix for the case
when S = 20, f = 3.2 and h0 = 0.1. Note that this is a strenuous test case, as this
choice of parameters leads to one of the largest vorticity and plate accelerations
of the physical parameters considered in this study. Table 3 contains details of the

Grid 1x 1t Smallest sub-domain size Total domain size
||χ − χf ||∞

||χf ||∞

1 0.0083 0.0004 [−0.2, 1.8] × [0.5, 0.5] [−15.07, 16.04] × [−7.87, 7.87] 0.00337
2 0.0083 0.0002 [−0.2, 1.8] × [0.5, 0.5] [−15.07, 16.04] × [−7.87, 7.87] 0.00474
3 0.0056 0.0001 [−0.2, 1.8] × [0.5, 0.5] [−15.07, 16.04] × [−7.87, 7.87] 0.00182
4* 0.0042 0.00015 [−0.2, 1.8] × [0.5, 0.5] [−15.07, 16.04] × [−7.87, 7.87] 0.00070
5 0.0042 0.00015 [−0.2, 1.8] × [0.5, 0.5] [−30.98, 32.75] × [−15.78, 15.78] 0.00019
6 0.0042 0.000075 [−0.2, 1.8] × [0.5, 0.5] [−15.07, 16.04] × [−7.87, 7.87] 0.00058
7 0.0033 0.0001 [−0.2, 1.8] × [0.5, 0.5] [−15.07, 16.04] × [−7.87, 7.87] —

TABLE 3. Simulation parameters for the grid convergence study. Grid 4 was used to
obtain the data presented in the article.
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various grids used in this convergence study. The final column of the table provides
the quantity ||χ −χf ||∞/||χf ||∞, where χ is the plate’s position computed on the grid
associated with the current row at t= 30 and χf is the plate’s position computed on
grid 7 at t= 30. The position of the plate is well converged for all grids considered,
which demonstrates that the chosen grid is adequate for the simulations used in this
article.
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