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Many materials, processes, and structures in science and engi-
neering have important features at multiple scales of time and/or
space; examples include biological tissues, active matter, oceans,
networks, and images. Explicitly extracting, describing, and defin-
ing such features are difficult tasks, at least in part because
each system has a unique set of features. Here, we introduce an
analysis method that, given a set of observations, discovers an
energetic hierarchy of structures localized in scale and space. We
call the resulting basis vectors a “data-driven wavelet decompo-
sition.” We show that this decomposition reflects the inherent
structure of the dataset it acts on, whether it has no structure,
structure dominated by a single scale, or structure on a hierarchy
of scales. In particular, when applied to turbulence—a high-
dimensional, nonlinear, multiscale process—the method reveals
self-similar structure over a wide range of spatial scales, providing
direct, model-free evidence for a century-old phenomenological
picture of turbulence. This approach is a starting point for the
characterization of localized hierarchical structures in multiscale
systems, which we may think of as the building blocks of these
systems.

wavelet | multiscale | data-driven decomposition | machine learning |
turbulence

Many important processes are multiscale in nature, mean-
ing that they exhibit structure at multiple scales of time

and/or space. In nature, a prominent example is the dynam-
ics of oceans and associated interactions with the atmosphere,
which govern the planet’s weather and climate systems (1); much
effort is expended in capturing and understanding effects at
multiple scales of time and space (2). In engineering, a promi-
nent example is networks, specifically social media networks.
Networks have multiscale structure by virtue of hierarchies of
communities of nodes in the networks (3). Understanding the
structure of hierarchical communities in social media networks is
crucial to understanding the spread of disinformation (and cen-
sorship of information) in these networks (4). Broadly speaking,
identifying and understanding the features present in multiscale
processes are crucial to understanding and controlling these
processes. Although the application we focus on here will be
turbulent fluid flows, the ensuing discussion applies to any mul-
tiscale process for which the notions of energy (variance in
the statistical context) and localization (a form of sparsity) are
relevant.

Turbulence is a canonical multiscale process consisting of
localized concentrations of vortex motion that are coherent in
space and time and coexist at a wide range of scales. Theo-
retical arguments indicate that at intermediate scales and far
from walls the structure of a turbulent flow should be self-
similar (5, 6). This notion is qualitatively illustrated in Fig. 1,
which illustrates a snapshot from a simulation of homogeneous
isotropic turbulence (HIT) at several scales (7–10). As with
other multiscale processes, a great challenge in fluid dynamics
is to rationally identify and analyze coherent structures from a
complex turbulent flow field. While it is often mathematically
convenient to analyze signals in the Fourier domain, trigonomet-
ric functions are not localized in space, and what one observes

at an instant in time in a turbulent flow rarely, if ever, looks
sinusoidal. Alternately, conventional wavelet bases, which are
localized and self-similar, can be used for analysis (11). In
both the Fourier and wavelet approaches the bases for rep-
resenting the flow are imposed a priori rather than emerging
from data.

One of the primary methods of extracting structure from data
is principal components analysis (PCA), which in fluid dynamics
is typically denoted proper orthogonal decomposition (12) (see
ref. 13 for other popular modal decomposition methods). Given
an ensemble (often a time series) of data, PCA yields a data-
driven orthogonal basis whose elements are optimally ordered
by energy content. When applied to velocity field data for a
fluid flow, the resulting basis elements may be thought of as
the building blocks of that flow, and its application has yielded
many structural and dynamical insights (12, 14). One limitation
of PCA is that the basis elements tend not to be localized in
space; indeed, for directions in which a field is statistically homo-
geneous, the PCA basis elements are Fourier modes (12). In this
case, not only do the PCA modes have no localization in space
but they also reveal no information about the flow beyond what
Fourier decomposition would provide.

A well-known formalism that produces bases with spatially
localized elements is that of wavelets. The name is quite descrip-
tive: Wavelets are localized waves. In particular, wavelet decom-
positions provide an orthogonal basis whose elements are local-
ized in both space and scale. Traditionally, the basis elements
are translations and dilations of a single vector called the mother
wavelet (15–19). SI Appendix, section 1 provides a concise sum-
mary of results relevant to the present work. Traditional wavelet
methods (where the mother wavelet is prescribed a priori) have
already found use in turbulence precisely because of the space-
scale unfolding they produce (11, 20–27), giving hope that data-
driven methods based on wavelets may lead to new insights into
turbulence.

A myriad of data-driven methods of structure identification
and extraction based on wavelets have been developed (e.g.,
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Fig. 1. Snapshot of HIT from the Johns Hopkins Turbulence Databases
(7–10), showing the kinetic energy per unit mass, with darker color
corresponding to greater energy.

refs. 28–38). Although these methods may yield localized struc-
tures, they are limited in that the construction of the resulting
basis elements is prescribed in either scale or frequency, and
many impose self-similarity on the basis, as is done with tra-
ditional wavelets (the “empirical wavelet transform” of ref.
28 does not have this feature but relies on the existence
of local maxima in the power spectrum of a signal, making
it ill-suited to phenomena like turbulence without such local
maxima).

In the present work we develop a method that integrates the
data- and energy-driven nature of PCA with the space and scale
localization properties of wavelets. As our derivation and illus-
trative examples will reveal, we impose very little structure in
our method, so any structure in the basis may be attributed to
the underlying structure of the dataset under consideration. We
call the resulting basis a “data-driven wavelet decomposition”
(DDWD) and use it to gain insights into the structure of tur-
bulence, though we emphasize that the method is general in its
application.

Formulation
Before presenting the DDWD, it will be useful to introduce key
features of PCA and conventional wavelet decompositions. Sup-
pose we have a dataset {zi}Mi=1 ∈RN , each zi being a sample data
vector (e.g., one component of a velocity field uniformly sampled
along a line through the flow). We can arrange the dataset into
a matrix Z ∈RN×M whose columns are the data vectors zi , nor-
malized so that trZZT =1 (the normalization does not change
the results of PCA, but is done here because it parallels our for-
mulation of DDWD later). PCA seeks an ordered orthonormal
basis {φi}Ni=1 such that the energy of the dataset projected onto
the first K ≤N basis elements is maximized. One way to state
this problem, which parallels our later description of data-driven
wavelets, is as follows. We determine the first basis element φ1

so that the projection of the data onto this element is maximized.
This problem can be written

max
φ

φTZZTφ [1]

s.t. φTφ=1. [2]

The solution to this problem is the eigenvector of ZZT with the
largest eigenvalue. The second basis element φ2 is found by pro-
jecting out the component of the data in the φ1 direction and

repeating, yielding that φ2 is the eigenvector of ZZT with the
second-largest eigenvalue. Basis elements φi solve

max
φ

∥∥∥∥∥φT

(
Z −

i−1∑
j=1

φjφ
T
j Z

)∥∥∥∥∥
2

2

[3]

s.t. φTφ=1, φTφj =0, j =1, . . . , i − 1. [4]

This formulation is recursive, producing a hierarchy of subspaces
ordered by how much of the dataset’s energy (Frobenius norm)
they contain: RN = span{φ1}⊕ . . .⊕ span{φN }. The basis ele-
ments φi are the eigenvectors of ZZT . For statistically homo-
geneous data in a periodic domain, ZZT (more precisely, its
expected value) is circulant, in which case the φi are simply
discrete Fourier modes.

Traditional wavelet decompositions also produce a hierarchy
of orthogonal subspaces, but there are important differences
from PCA. First, the basis elements are not determined from
data but are selected a priori; there are many standard options
(18). Second, by construction, the decomposition produces a
hierarchy of orthogonal subspaces ordered by scale, as shown in
Fig. 2A. We consider periodic vectors on RN , with N even (19).
This space is split into subspaces V−1 and W−1, each of dimen-
sion N /2, and each spanned by the even translates of vectors φ−1

(the father wavelet) and ψ−1 (the mother wavelet), respectively.
Once φ−1 is known, ψ−1 can be found, and vice versa. The father
and mother wavelets, and their even translates, are mutually
orthonormal by construction. Subspace V−1 is called an approx-
imation subspace because it contains all of the low frequencies,
and W−1 is called a detail subspace because it contains all of the
high frequencies. Given a signal, its projection onto V−1 pro-
duces a low-pass-filtered version of the signal, and its projection
onto W−1 produces the detail needed to reconstruct the full sig-
nal. We then recursively split the approximation subspaces. For
N =2p (which we assume throughout), we get a hierarchy of

Coarsening

Adding detail

B

A

Fig. 2. (A) Subspaces from wavelets on RN. At stage l, approximation sub-
space V−l is split into detail subspace W−l−1 and approximation subspace
V−l−1, each half the dimension of V−l. Subspace V−l is spanned by the
N/2l translates by 2l of φ−l, and W−l is spanned by the N/2l translates by
2l of ψ−l. The full space is decomposed into progressively coarser subspaces,
RN = W−1⊕ . . .⊕W−p⊕V−p, or, going the other way, into the addition of
progressively finer details. These subspaces are highlighted. In the present
work, an ensemble of data is used to define a specific decomposition of this
form. (B) Discrete Meyer wavelet for N = 4,096 and l = 6.
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Fig. 3. White noise wavelets on R25
. Coloring as in Fig. 2A. No variance penalty (A), small variance penalty (B), and large variance penalty (C).

subspaces of progressively coarser scales: RN =W−1⊕ . . .⊕
W−p ⊕V−p . For traditional wavelets, the sets of wavelets {φi}
and {ψi} are determined from the father and mother wavelets,
respectively, by a rescaling operation that is essentially a simple
dilation by a factor of two (see SI Appendix, section 4A, for more
details). This process leads to a hierarchical basis structure of the
form shown in Fig. 2A.

The DDWD combines the hierarchical structure of wavelets
that is shown in Fig. 2A with the energetic optimization of PCA.
Namely, each time we split a subspace, we design the subsequent
subspaces so that the approximation subspace contains as much
of the dataset’s energy as possible.

The first step of the process is to find the wavelet generator u ,
for which the projection of the data onto this vector and its even
translates is maximized. We define V−1 as the subspace spanned
by these vectors, thus beginning the data-driven construction of a
hierarchy with the structure of Fig. 2A. This maximization is sub-
ject to 1) the constraint that u and its even translates are mutually
orthonormal and 2) a penalty on the width of u , as measured by
its circular variance Var(u). This problem is stated as

max
u

uTAu −λ2Var(u), A=
1

‖Z‖2F

N/2−1∑
k=0

R−2kZZTR2k

[5]

s.t. uTR2ku = δk0, k =0, . . . ,N /2− 1. [6]

Here λ measures the penalty on the variance, whose effect on
the results we illustrate below, and R is the circular shift opera-
tor: For example, if u = [a, b, c, d ]T , then Ru = [d , a, b, c]T . The
solution u and its even translates generate the vectors φ−1 and
ψ−1; the former span V−1 and the latter W−1. We then project
the data onto V−1, replace N by N /2 in the definition of A
and the orthonormality constraints, decrease λ by a factor of
2, and repeat, yielding φ−2 and ψ−2, and thus the subspaces V−2

and W−2. We proceed recursively, finding the subspaces V−l and
W−l such that V−l contains the maximal amount of energy of the
dataset. Extensive details are found in SI Appendix, section 2. In
the end, we find an energetic hierarchy of subspaces, optimized
stage by stage, whose elements are orthogonal and localized. In
contrast to previous data-driven methods incorporating wavelets,
which impose restrictive structure, the only structure we impose
is orthogonality, localization, and the hierarchy of Fig. 2A. In SI
Appendix, section 3 we also draw parallels between the DDWD
and convolutional neural networks and show how the DDWD
naturally incorporates pooling and skip connections, two tricks

that improve the performance of neural network architectures
(39). Together with its inverse transform, the DDWD is akin to
a convolutional autoencoder, but with the additional features of
orthogonality of all elements, stagewise energetic optimality, and
the ability to unambiguously extract structure, which make the
results interpretable.

We make a point to note that for the DDWD the stage l of the
hierarchy should not be conflated with the concept of scale. For
traditional wavelets, stage and scale are interchangeable since
whenever a subspace is split the lower half of frequencies is
always pushed to the approximation subspace and the upper half
of frequencies is always pushed to the detail subspace. For the
DDWD, however, the distribution of frequencies among the sub-
spaces is dictated by energetic considerations, which depends on
the dataset under consideration. An example below will elucidate
this point.

Results
We will demonstrate the DDWD on three datasets with increas-
ingly complex structure to show that the method extracts
structure inherent to the data.

Gaussian Random Data. The first dataset we consider consists
of Gaussian white noise, which has no structure. By construc-
tion, the basis produced by the DDWD is orthonormal, so the
change-of-basis transformation is orthogonal. Any orthogonal

A

B

Fig. 4. Trajectory (A) and attendant power spectrum (B) of the Kuramoto–
Sivashinsky equation.

Floryan and Graham
Discovering multiscale and self-similar structure with data-driven wavelets

PNAS | 3 of 6
https://doi.org/10.1073/pnas.2021299118

D
ow

nl
oa

de
d 

at
 S

te
en

bo
ck

 M
em

or
ia

l L
ib

ra
ry

 o
n 

D
ec

em
be

r 
21

, 2
02

0 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2021299118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2021299118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2021299118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2021299118/-/DCSupplemental
https://doi.org/10.1073/pnas.2021299118


BA

Fig. 5. Kuramoto–Sivashinsky wavelets (A), offset from each other by 0.5,
and their power spectra (B). Coloring as in Fig. 2A. The variance penalty is
λ2 = 0.1.

transformation of Gaussian white noise produces Gaussian white
noise. Therefore, applied to Gaussian white noise, the coordi-
nates of the data in the DDWD basis (the wavelet coefficients)
will be Gaussian white noise, so all wavelet coefficients will be
uncorrelated and have energy equal to that of the input Gaus-
sian white noise. As long as we do not impose a variance penalty,
this result implies that for Gaussian white noise there is no opti-
mal set of wavelets, in the sense we have defined. In other words,
the DDWD reflects that the dataset has no structure. If we do
impose a variance penalty, then the optimal wavelets become
discrete delta functions (i.e., the Euclidean basis vectors). The
reason for this is simple: All wavelets capture the energy of
white noise equally well, but the delta function will be the most
localized among them.

The result that all wavelets capture the energy of Gaussian
white noise equally well highlights an interesting fact about the
DDWD. In Fig. 3 we show three sets of wavelets that are com-
puted from a dataset of Gaussian white noise. Fig. 3A has no
variance penalty, Fig. 3B has a small variance penalty, Fig. 3C
has a large variance penalty, and all wavelets are colored accord-
ing to the color coding used in Fig. 2A. Despite the fact that we
have used the structure of Fig. 2A, there is no apparent hierar-
chy of scales among the left set of wavelets. This highlights what
we noted earlier, that the concept of scale is not built into the
DDWD; rather, it must be learned from the data. When we add
a small variance penalty, wavelets corresponding to finer-detail
subspaces are more localized, but all wavelets are jagged; this will
contrast with our later examples where wavelets corresponding
to later stages are smoother, reflecting the inherent structure of
the later examples. Note that although the central set of wavelets
was computed with nonzero variance penalty, they are not delta
functions as we had asserted earlier; this is due to the dataset
containing a finite number of samples, and this effect weakens
as the number of samples increases or as the variance penalty is
increased (as for the right set of wavelets). In Fig. 3C, all of the
vectors are discrete delta functions; while this might seem redun-
dant, only certain translates of the discrete delta function are
included in each stage, and the resulting basis consists of delta
functions localized at each mesh point.

Kuramoto–Sivashinsky Chaos. The second dataset we consider
comes from the Kuramoto–Sivashinsky equation,

ut + uux + uxx + νuxxxx =0, [7]

for 0≤ x ≤ 2π, with periodic boundary conditions and
ν=(π/11)2, which yields chaotic dynamics. We compute a
numerical solution using a pseudo-spectral method with 64
Fourier modes and assemble a dataset consisting of 90,001
snapshots taken from a single trajectory. The latter part of the
trajectory and the power spectrum in Fig. 4 clearly show that the
structure is dominated by a single length scale with wavenumber
k around 2 to 3.

We compute the DDWD with a range of variance penalties,
showing the result for λ2 =0.1 in Fig. 5 (others are shown in
SI Appendix, section 4B). We only show one set of wavelets
because, no matter the variance penalty, the coarsest subspaces
are the same: V−6 is spanned by a sine wave with wavenum-
ber k =2 (the most energetic wavenumber), W−6 is spanned by
a sine wave with wavenumber k =3 (the second-most-energetic
wavenumber), and W−5 is spanned by a vector (and its trans-
late) containing only wavenumbers k =3 and 4 (k =4 is the next
most energetic wavenumber). The DDWD is thus robust in push-
ing the dominant (most energetic) length scales of the system
to the lowest stages. Moreover, the energy contained in each
subspace is also robust to the variance penalty (SI Appendix).
The first difference between wavelets computed with different
variance penalties appears in the subspace W−4, spanned by
the four translates of ψ−4. As the variance penalty is increased
the wavenumber k =8 is exchanged for k =0. Energetically, this
makes little difference since k =8 is highly damped by the hyper-
viscous term and contains very little energy, and k =0 contains
identically zero energy (for the boundary conditions we use, the
spatial mean is constant and can be set to zero). The compo-
sitions of the finer detail subspaces do not change qualitatively
with variance penalty, with finer detail subspaces containing
higher wavenumbers. As the variance penalty is increased, local-
ization in the Fourier domain is exchanged for localization in the
spatial domain.

Homogeneous Isotropic Turbulence. The final and primary dataset
we consider is of forced HIT, taken from the Johns Hopkins Tur-
bulence Databases (7–10). We use a single snapshot from a direct
numerical simulation on a 4,0963 periodic grid with a Taylor-
scale Reynolds number of 610.57, shown in Fig. 1; more details
are available in the database’s documentation. Our dataset con-
sists of the velocity component aligned with 16,384 randomly
sampled lines (the “longitudinal velocity”) that are parallel to
the axes. Each sample is a vector of length N = 4,096. The
power spectrum is broad and has the expected −5/3 power law
in the inertial subrange, which roughly contains wavenumbers
k ∈ [2, 60].

A C

B

Fig. 6. HIT wavelets, vertically offset from each other by 0.25. Coloring
as in Fig. 2A. The variance penalties are λ2 = 10−1 (A), λ2 = 100 (B), and
λ2 = 101 (C).
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Fig. 7. Projection (denoted P) of one vector (denoted z) in the turbulence
dataset onto the subspaces V−l computed with λ2 = 101 (A), with coloring
as in Fig. 2A. The thin dashed line shows the origin, and the thin solid line
shows the original vector. Also shown are the reconstruction error of each
projection (B) and the energy of the dataset contained in each stage for all
variance penalties considered (C) (λ2 = 0, 10−1, 100 and 101; only the result
for λ2 = 101 [red] can be seen).

Fig. 6 shows the DDWD with various variance penalties (their
power spectra are shown in SI Appendix, section 4C). While
at λ2 =10−1 the wavelets are well-localized only for l ≤ 5, for
λ2 =100 and 101 localization is observed for l ≤ 8 and 9, respec-
tively. Moreover, despite the order-of-magnitude difference in
λ2 between the latter two cases, the wavelets for 4≤ l ≤ 8 are
nearly indistinguishable (see SI Appendix for more details). Fur-
thermore, with increasing l , the wavelets have increasing scale:
The DDWD reveals a hierarchy of scales present in the dataset, a
known feature of turbulence. Recall that this feature is not built
into the DDWD; rather, the method has extracted the concept
of scale hierarchy from the turbulence dataset. In this case, it is
appropriate to conflate stage and scale.

It is also worth noting that with increasing variance penalty
the composition of each scale in the Fourier domain (shown in
SI Appendix) becomes smoother and more robust, varying less
across different trials. Overall, the composition of the wavelets
in the Fourier domain is robust to the variance penalty.

To illustrate the reconstruction of data vectors using the
DDWD basis, Fig. 7A shows one vector from the turbulence
dataset and its projections onto the subspaces V−l computed
with λ2 =101. Lighter colors show more detailed reconstruc-
tions, and the thin black line shows the original data vector. At
the coarsest level of approximation, we essentially reconstruct
the spatial mean and then add progressively finer-scale features
as we add smaller scale wavelet components. Fig. 7 B and C,
respectively, show the reconstruction errors of the progressively
finer projections, and the energy of the entire dataset contained
in each stage, for λ2 =0, 10−1, 100, and 101. The differences
in these quantities as λ changes are visibly indistinguishable,
indicating robustness of the DDWD with respect to variance
penalty.

Most interestingly, we check the wavelets that arise from the
HIT data for self-similarity across stages. We present here results
for the most localized wavelets, corresponding to λ2 =101, and
show in SI Appendix, Fig. S10, that the same conclusions hold
for λ2 =100. Fig. 8 A–E show wavelets ψ−l for 4≤ l ≤ 8; note
the change in horizontal scale from plot to plot. Aside from their
horizontal scale, these wavelets are evidently very similar look-
ing. The figure also shows on each plot the rescaled version of
the wavelet at the previous level, Sψ−l+1, where S essentially
dilates a vector by a factor of 2 and rescales it so that it has
unit norm. (See SI Appendix, section 4A for a precise descrip-
tion of S and SI Appendix, Figs. S10 and S11 for plots of ψ−l

and Sψ−l+1 for all l .) For ease of comparison, we have shifted

the wavelets and in some cases reflected them about their axes.
In all cases shown, ψ−l and Sψ−l+1 are nearly indistinguishable,
indicating strong self-similarity across stages l =4 to l =8. This
observation can be quantified: Fig. 8F shows the inner product
ψT
−lSψ−l+1, whose absolute value is bounded by 0 and 1, for

all stages. It is very close to unity for l > 3. This strong self-
similarity also holds for the lower variance penalty λ2 =100, as
shown in SI Appendix, Fig. S10, indicating that it is a robust fea-
ture derived from the data. Stages 4 to 8 contain the approximate
wavenumbers k ∈ [10, 200], which coincides with the inertial sub-
range where self-similarity is expected. (The larger scales are
no longer localized, so we draw no significance from the high
measure of similarity in those cases.) Interestingly, the wavelets
in the self-similar range are quite similar to the discrete Meyer
wavelet (18), shown in Fig. 2B, as well as to the Battle–Lemarié
wavelet used by Meneveau in his analysis of turbulent flows (27).
Performing Meneveau’s analysis with our data-driven wavelets
would likely yield similar results, at least in the self-similar
range.

It bears repeating that the self-similarity of the wavelets pro-
duced by the DDWD is not a result of the method; rather, it is a
reflection of the system. In the case of the Kuramoto–Sivashinsky
system, where we know there is no similarity across scales, there
is generally no relation between the data-driven wavelets across
scales. For HIT, where self-similarity is hypothesized in a cer-
tain range of scales, the data-driven wavelets show self-similarity.
Hellström et al. (14) made a somewhat related observation in
turbulent pipe flow. They performed PCA on a set of experimen-
tally obtained velocity fields from a cross-section of the pipe and
found that they could rescale the modes so that they overlapped.
This observation is consistent with the attached eddy hypothesis
about the structure of wall turbulence (5, 40). Their modes were
global in space, as usually results from PCA; this is particularly
true for the azimuthal direction, for which PCA yields Fourier
modes due to periodicity. For the HIT data, which are periodic in
all three directions, PCA would yield Fourier modes in all three
directions, revealing no information about the system that could
not be obtained from Fourier decomposition.

Conclusions
We have introduced a method that integrates key aspects of PCA
and wavelet analysis to yield a DDWD. This method takes an
ensemble of data vectors corresponding to field values at a lat-
tice of points in space (or time) and generates a hierarchical

D

E

FC

B

A

Fig. 8. Comparison between computed wavelets (λ2 = 101) and ones
obtained by dilating and rescaling the wavelet from the previous stage for
stages l = 4 to l = 8 (A–E) and the level of similarity across all stages (F).
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orthogonal basis. In contrast to traditional wavelet bases, the
basis elements at each stage are not simply dilations of given
mother or father wavelets but rather are determined stage-by-
stage from the data. For data that is not self-similar, neither
are the resulting basis elements. Rather, these represent the
differing structures at the different stages. In contrast, for self-
similar data, the basis vectors at different stages are related to
one another by a simple rescaling. Indeed, for data from HIT—a
high-dimensional, nonlinear, multiscale process—we show self-
similarity of the wavelet basis elements, which in turn reveals
the self-similarity of the data, providing direct evidence for a
century-old phenomenological picture of turbulence.

Future work on the DDWD will need to extend the methodol-
ogy to multiple dimensions, different boundary conditions, and
unstructured domains. As a start, tensor products can be used
to address the first issue, boundary wavelets can be used to
address the second issue (18), and wavelets on graphs can be
used to address the last issue (41). For incompressible fluid flows,

velocity fields are vector-valued and divergence-free; Farge et al.
(23) provide a few options to handle this case that may be gener-
alizable to the data-driven case. Attention must also be given to
the development of efficient optimization algorithms for comput-
ing the basis. Finally, based on the ability of the present method
to extract self-similar basis elements from self-similar turbulent
flow data, we view it as a potentially important new starting
point for identification and characterization of localized hierar-
chical turbulent structures in a wide variety of fluid flows, as well
as other complex multiscale systems. We are particularly inter-
ested in applying the DDWD to wall-bounded flows and making
connections with the attached eddy model of turbulence.

Data Availability. Simulation data and code have been deposited in GitHub,
available at https://github.com/dfloryan/DDWD.
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Supporting Information Text

1. Background on wavelets

Since we work with data, we restrict our attention to discrete vectors of finite length. Such vectors can be represented by many
bases, the most common being the Euclidean basis and the Fourier basis. Two nice features of the discrete Fourier basis are
that it diagonalizes translation-invariant linear transformations, and the coordinates of a vector in the discrete Fourier basis
can be computed quickly using the fast Fourier transform (FFT). Furthermore, the elements of the discrete Fourier basis have
perfect localization in frequency, that is, the discrete Fourier transform (DFT) of any element of the discrete Fourier basis is a
vector of zeroes aside from a single entry with unit magnitude. A drawback of the discrete Fourier basis, however, is that
its elements have no localization in space, that is, the modulus of any element is a vector with all entries equal to the same
constant. In contrast, the elements of the Euclidean basis have no localization in frequency, but perfect localization in space.

Wavelets provide a happy medium, allowing us to construct a basis whose elements have some degree of localization in both
space and frequency. A vector’s expansion in a wavelet basis will provide both spatial and frequency information. Below, we
describe wavelets in CN , the space of length N vectors with inner product

〈z, w〉 =
N−1∑
k=0

z(k)w(k), [1]

and associated norm

‖z‖ =

(
N−1∑
k=0

|z(k)|2
)1/2

, [2]

where the overbar denotes complex conjugation. Throughout, z(k) refers to the kth element of the vector z, indexed beginning
from zero. In addition, we extend z ∈ CN to be defined at all integers by requiring z to be periodic with period N :
z(j +N) = z(j) ∀ j ∈ Z. The following is based on chapter 3 of (author?) (1).

Assume N is divisible by 2. A first-stage wavelet basis for CN is an orthonormal basis for CN of the form

{R2ku}N/2−1
k=0 ∪ {R2kv}N/2−1

k=0 , [3]

for some u, v ∈ CN . The operatorR shifts elements of a vector by one place as follows: Rz = [z(N − 1), z(0), z(1), . . . , z(N − 2)]T .
Note that Rj shifts elements by j places; we call Rjz the translate of z by j. So a first-stage wavelet basis consists of the even
translates of u and v, which are called the generators, or sometimes the father and mother wavelets, respectively. In order to
generate an orthonormal basis, we require that u, v, and their translates be mutually orthonormal,

〈u,R2ku〉 =
{

1, k = 0
0, k = 1, 2, . . . , N/2− 1

, [4]

〈v,R2kv〉 =
{

1, k = 0
0, k = 1, 2, . . . , N/2− 1

, [5]

〈u,R2kv〉 = 0, k = 0, 1, . . . , N/2− 1. [6]

These constraints are equivalent to

|û(n)|2 + |û(n+N/2)|2 = 2, n = 0, 1, . . . , N/2− 1, [7]
|v̂(n)|2 + |v̂(n+N/2)|2 = 2, n = 0, 1, . . . , N/2− 1, [8]

û(n)v̂(n) + û(n+N/2)v̂(n+N/2) = 0, n = 0, 1, . . . , N/2− 1. [9]

Here,ˆdenotes the DFT of a signal, and ẑ(m) is the mth component of ẑ, given by ẑ(m) =
∑N−1

n=0 z(n)e−2πimn/N . Formulating
the constraints in the Fourier domain makes it clear that we may select u to contain only low-frequency components and v to
contain only high-frequency components (or vice versa). Many common wavelet generators are constructed in the Fourier
domain because Eq. (7)–Eq. (9) make satisfying the orthonormality constraints easy. Standard notation has u contain the low
frequencies and v contain the high frequencies.

One may wonder, why construct an orthonormal basis from even translates of two vectors instead of all the translates of a
single vector? One may show that {Rkw}N−1

k=0 is an orthonormal basis for CN if and only if |ŵ(n)| = 1 ∀n ∈ ZN . In words, a
basis of this form has no frequency localization.

Given u, we can construct v (or vice versa). Suppose {R2ku}N−1
k=0 is an orthonormal set. Define v by

v(k) = (−1)k−1u(1− k) ∀ k. [10]

Then one can check that {R2ku}N/2−1
k=0 ∪ {R2kv}N/2−1

k=0 is indeed a first-stage wavelet basis.
Once we have a first-stage wavelet basis, we can calculate the coordinates of z ∈ CN in this basis quickly using convolutions

by noting that 〈z,R2kv〉 = z ∗ ṽ(2k), and similarly for u. Here, the convolution z ∗ w ∈ CN is the vector with components
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z ∗ w(m) =
∑N−1

n=0 z(m − n)w(n)∀m, and the˜denotes conjugate reflection: for any w ∈ CN , define w̃ ∈ CN by w̃(n) =
w(−n) = w(N − n)∀n. Convolutions are quick to compute because z ∗ w = (ẑŵ)̌: we perform elementwise multiplication of
the DFTs of z and w, and then take the inverse discrete Fourier transform (IDFT) of the result, denoted by .̌ For w ∈ CN ,
w̌ ∈ CN is defined as the vector whose nth entry is w̌(n) = 1

N

∑N−1
m=0 w(m)e2πimn/N . Thus, we can calculate the coordinates of

z in a first-stage wavelet basis quickly by two convolutions of z with ũ and ṽ, followed by throwing out the odd-indexed terms,
which we call downsampling. The downsampling operator, D, is defined formally as follows. Suppose M ∈ N and N = 2M .
Define D : CN → CM by setting, for z ∈ CN , D(z)(n) = z(2n) for n = 0, 1, . . . ,M − 1.

To recover the original signal from its first-stage wavelet coordinates, we upsample, convolve with u and v, and add the
results. The upsampling operator, U : CM → C2M , is defined by setting U(z)(n) = z(n/2) for n even, and 0 for n odd.
The forward and inverse transforms are shown schematically in Figure S1, where “↓ 2” and “↑ 2” denote downsampling and
upsampling, respectively.

A. Iteration step. The arrangement in Figure S1 suggests the possibility for iteration. In standard wavelet analysis, the same
convolve-downsample and upsample-convolve steps are performed only on the lower branch containing the lower frequencies; a
two iteration example is shown in Figure S2. One motivation for this choice is that it is often natural to think of frequencies on
a logarithmic scale (e.g., in music, and even in turbulence). One could iterate on both branches, but we will follow convention
and iterate only on the lower branch.

When N is divisible by 2p, we may perform p iterations, which yields a pth-stage wavelet basis. At each stage l, we
require vectors ul, vl ∈ CN/2l−1

satisfying the constraints Eq. (7)–Eq. (9) (as before, vl can be automatically constructed
from ul by Eq. (10), and vice versa). We denote the coefficients output at each stage by xl, yl ∈ CN/2l

, with x1 = D(z ∗ ṽ1),
y1 = D(z ∗ ũ1), and the others defined inductively by xl = D(yl−1 ∗ ṽl) and yl = D(yl−1 ∗ ũl). The output of the forward
pth-stage wavelet transform is the set of vectors {x1, x2, . . . , xp, yp}. Note that this set has a total of N numbers, so there is no
lost or redundant information.

The recursive description is useful for algorithmic purposes, but there is an equivalent nonrecursive formulation which gives
us more insight. Define

f1 = v1, g1 = u1. [11]

Then inductively define fl, gl ∈ CN by

fl = gl−1 ∗ U l−1(vl), gl = gl−1 ∗ U l−1(ul). [12]

Now the vectors xl and yl introduced above are given by

xl = Dl(z ∗ f̃l), yl = Dl(z ∗ g̃l). [13]

Now, for j = 1, 2, . . . , p and k = 0, 1, . . . , N/2j − 1, let

ψ−j,k = R2jkfj , φ−j,k = R2jkgj . [14]

Then the set of vectors
{ψ−1,k}N/2−1

k=0 ∪ {ψ−2,k}N/4−1
k=0 ∪ · · · ∪ {ψ−p,k}N/2p−1

k=0 ∪ {φ−p,k}N/2p−1
k=0 [15]

is an orthonormal basis for CN , and its elements are called wavelets on ZN . The basis Eq. (15) comprises N/2 translates by
two of ψ−1,0, N/4 translates by four of ψ−2,0, and so on, down to N/2p translates by 2p of ψ−p,0, and N/2p translates by 2p of
φ−p,0. For compactness, we write ψ−l in place of ψ−l,0 and φ−l in place of φ−l,0.

Now define the spaces W−l = span{ψ−l,k}(N/2l)−1
k=0 and V−l = span{φ−l,k}(N/2l)−1

k=0 . Then one may show that V−l ⊕W−l =
V−l+1, meaning that V−l and W−l are subspaces of V−l+1, they are orthogonal to each other, and every element in V−l+1 can
be written as a sum of some element in V−l and some element in W−l. We then get the picture sketched in Figure 2A in the
main text (replacing RN in the figure with the more general CN considered here), where the arrows represent containment.
This is a conceptually important picture. Beginning at the left, we break CN into orthogonal subspaces V−1 and W−1. We
then break V−1 into orthogonal subspaces V−2 and W−2. We proceed until the pth stage, where we are left with orthogonal
subspaces V−p and W−p.

We can interpret this recursive splitting as follows. Recall that V−l is associated with ul and W−l is associated with vl,
and ul contains low frequencies while vl contains high frequencies. Beginning at the left, we break CN into a “coarse” or
“approximation” subspace (V−1) and a “fine” or “detail” subspace (W−1). We then progressively split the coarse subspaces into
coarser and detail subspaces. Beginning at the right, we take the coarsest subspace (V−p) and add some detail (W−p) to it to
produce the next coarsest subspace. We progressively add details to produce richer subspaces, until we finally produce CN . So
as we go from left to right, we coarsen our view by removing details, while as we go from right to left, we sharpen our view by
adding details.

Up to now, we have not required any relationship between the ul, vl at different stages. There is a way to construct the
ul, vl from u1, v1 that will give an orthonormal basis. When this is done, we say that we have a wavelet basis with repeated
filters; this is what is usually meant by “wavelets”. To do so, we set

ul(n) = ul−1(n) + ul−1(n+N/2l−1), for n = 0, 1, . . . , N/2l−1, [16]
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and similarly for vl. This is part of what is called the folding lemma, since we obtain ul by cutting ul−1 just before its halfway
point N/2l−1, folding that part over the first part, and summing. Iterating Eq. (16) yields that

ul(n) =
2l−1−1∑
k=0

u1

(
n+ kN

2l−1

)
, for n = 0, 1, . . . , N/2l−1, [17]

and similarly for vl. This way, we only need to construct a u1 that is mutually orthonormal with its even translates, and then
we can automatically construct v1 using Eq. (10), and the rest of the ul and vl using Eq. (17).

Finally, the reader will note that the hierarchical basis structure illustrated in Figure 2A of the main text is intimately
linked with the factor of two between scales, as well as to the orthogonality of each wavelet basis element with respect to the
version of itself shifted by two lattice points.

B. An example: Haar wavelets. To demonstrate what we have written about so far, we show the simplest wavelet basis with
repeated filters: the discrete version of the Haar wavelets. We will work in R8.

The first step is to find the father and mother wavelets, respectively φ−1 and ψ−1, which are equal to the generators,
respectively u1 and v1. Recall that if we know one of them, we can automatically construct the other such that all the required
constraints are satisfied. The Haar father wavelet is φ−1 =

[
1/
√

2, 1/
√

2, 0, 0, 0, 0, 0, 0
]T ; one can easily check that it has unit

norm and its four translates by two are mutually orthogonal. Using Eq. (10), we automatically generate the Haar mother
wavelet ψ−1 =

[
−1/
√

2, 1/
√

2, 0, 0, 0, 0, 0, 0
]T ; one can easily check that it has unit norm and its four translates by two are

mutually orthogonal, as well as orthogonal to the four translates by two of the father wavelet. One can also check that the
father wavelet comprises low frequencies, while the mother wavelet comprises high frequencies. In fact, the mother wavelet has
a mean of zero; this is actually imposed for wavelets on R.

Taking the inner product of a vector z ∈ R8 with the father wavelet and its translates produces local averages of z, making
it clear that the subspace spanned by {φ−1,k}3

k=0 is a “coarse” or “approximation” subspace. Taking the inner product of
z with the mother wavelet and its translates produces local differences of z, making it clear that the subspace spanned by
{ψ−1,k}3

k=0 is a “fine” or “detail” subspace; it provides the details that are filtered out of the approximation subspace.
Continuing on to the next stages, we use Eq. (16) to automatically generate the ul and vl. In Figure S3, we show the

subspace view of the Haar wavelets (analogous to Figure 2A in the main text). V−1 is spanned by {φ−1,k}3
k=0, and W−1 is

spanned by {ψ−1,k}3
k=0. We then break down V−1 into V−2 and W−2, respectively spanned by {φ−2,k}1

k=0 and {ψ−2,k}1
k=0.

Finally, V−2 is broken down into V−3 and W−3, respectively spanned by φ−3 and ψ−3. As we move to later stages, the
approximation subspaces become progressively coarser. As we move to earlier stages, we add progressively finer details to
produce progressively richer subspaces. The later stages contain large-scale features, and the earlier stages contain small-scale
features; we will make much use of this terminology.

Finally, notice that φ−l and ψ−l are respectively dilations by two (properly normalized) of φ−l+1 and ψ−l+1. This perfect
self-similarity is unusual for discrete wavelets of finite length due to boundary effects. In Figure S4, we show an example of
wavelets (the Daubechies-2 wavelets (2)) that are not simply rescaled dilations of wavelets from the previous stage (but nearly
are), and see that the departure from simple dilation increases as the width of the wavelet increases. Finally, we note that
wavelets on the unbounded domain R are constructed such that wavelets at different stages are exactly rescaled dilations of
each other.

2. Computing the data-driven wavelet decomposition

With the above standard material as background, we now describe our method for constructing a wavelet basis from an
ensemble of data. Suppose we are given a dataset whose elements are in RN . When we split RN into the approximation and
detail subspaces V−1 and W−1, some fraction of the energy of the dataset will be contained in V−1, and the rest in W−1, since
RN = V−1 ⊕W−1. By energy, we mean the squared norm. Typically, the most energetic features of a dataset are large in scale,
i.e., coarse, so they will be contained in the approximation subspace. This motivates the following sense of optimality: we
would like to find the wavelet that maximizes the fraction of a dataset’s energy in the large scales. In spirit, this approach is
very similar to PCA, but it has the additional structure of the discrete wavelet framework. Additionally, we will encourage the
wavelet basis elements to be localized.

A. The optimization problem. We now state the mathematical problem. Given a dataset {zi}Mi=1 ∈ RN , where N is divisible by
2, we begin by finding a wavelet generator u ∈ RN such that the coarse reconstruction error is minimized, subject to a penalty
on the spread of the wavelet. This problem can be posed as

min
u

1∑M

i=1
‖zi‖2

∑M

i=1 ‖zi −
∑N/2−1

k=0 〈zi, R2ku〉R2ku‖2 + λ2Var(u) [18]

s.t. 〈u,R2ku〉 =
{

1, k = 0
0, k = 1, . . . , N/2− 1

. [19]

The first term in the objective function is the normalized squared reconstruction error of the data when it is projected onto
V−1, or equivalently the data’s normalized energy contained in W−1. By normalizing it, the first term is bounded between 0
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and 1. The second term is the variance of the wavelet generator u, multiplied by a penalization factor λ2 that encourages the
computed wavelets to be localized. As we will show next, the variance is also bounded between 0 and 1. Our normalization
makes the two terms the same order of magnitude, and λ2 sets the balance between them in the objective function.

Because the domain is periodic, the definition of the variance on the real line will not work. Since u has unit norm, squaring
its values gives a probability mass function p, with p(k) = u(k)2. We imagine the domain to be the unit circle, broken into N
equal segments. Each segment on the unit circle corresponds to a point (x, y) = (cos θ, sin θ) in the Cartesian plane, and the
mean is (x, y) = (r cos θ, r sin θ), with

x =
N−1∑
k=0

cos
(2πk
N

)
p(k), y =

N−1∑
k=0

sin
(2πk
N

)
p(k). [20]

(Think of the unit circle as a hoop with N segments whose masses are given by the probability mass function. Then (x, y) is
the center of mass of the hoop.) The radius r gives a measure of the tightness of the distribution, and 0 ≤ r ≤ 1. In fact, the
variance on a periodic domain (called the circular variance) is defined as 1− r (3). Explicitly, the variance is

Var(u) = 1−
√
x2 + y2 = 1−

√√√√[N−1∑
k=0

cos
(2πk
N

)
u(k)2

]2

+

[
N−1∑
k=0

sin
(2πk
N

)
u(k)2

]2

. [21]

We can formulate the optimization problem in terms of matrices. Let Z = [z1 . . . zM ] contain the data as columns. Then
the minimization problem is equivalent to the following maximization problem,

max
u

uTAu− λ2Var(u) [22]

s.t. 〈u,R2ku〉 =
{

1, k = 0
0, k = 1, . . . , N/2− 1

, [23]

where

A = 1
||Z||2F

N/2−1∑
k=0

R−2kZZTR2k = 1
||Z||2F

N/2−1∑
k=0

(R−2kZ)(R−2kZ)T . [24]

Note that (R2k)T = R−2k. The matrix A is symmetric, and for statistically homogeneous data it is also circulant, in which
case its eigenvectors are discrete Fourier modes.

Aside from the variance penalty, this formulation is now much like PCA. In PCA, A = ZZT , and we just require u to have
unit norm. The maximizer is the dominant eigenvector of A. We then project out the component in the u direction and repeat,
which is the same thing we do in DDWD.

By solving the maximization problem, we find the generator u1 that yields the most energetic approximation subspace V−1.
The complementary generator v1 is constructed from u1 using Eq. (10). We then proceed recursively, at each stage solving
an analogous maximization problem to maximize the energy of the data contained in that stage’s approximation subspace.
The data matrix Z used in stage l comes from convolving the data used in stage l − 1 with ũl−1 and downsampling, following
Figure S2. At each stage, the N that appears in the orthonormality constraints and definition of A is the dimension of the
data vectors at that stage, i.e., it is halved as we move from one stage to the next. The ul at each stage l is the result of a
maximization problem (vl follows automatically from ul), and there is no predetermined relationship between the ul across
stages, in contrast to traditional wavelets that use repeated filters. That is, Eq. (16) and Eq. (17) are not imposed upon the
wavelets obtained with DDWD.

It is worth emphasizing that we work directly with the generators {ul}, not the wavelets {φ−l} and {ψ−l}. We do so because
the recursive formulation leads to fast transform algorithms with O(N log2 N) complexity, an improvement over the O(N2)
complexity of direct methods. This is directly analogous to the FFT algorithm. Although the variance penalty is imposed
directly on the generators, Section 1A shows that the wavelets are constructed by repeated convolutions of the generators, so
localized generators yield localized wavelets.

Finally, we address the issue of how λ should change at each stage. In conventional wavelets (as described in Section 1A),
the variance of ul is approximately four times that of ul−1, with the factor being closer to four the more localized ul−1 is. To
see why this is so, recall that the variance of u is given

Var(u) = 1−

√√√√[N−1∑
k=0

cos
(2πk
N

)
u(k)2

]2

+

[
N−1∑
k=0

sin
(2πk
N

)
u(k)2

]2

. [25]

Assuming that u is compact and concentrated near k = 0, we Taylor expand in ε = 1/N . To leading order, the variance is
given by

Var(u) = 2π2ε2
N−1∑
j=0

N−1∑
k=0

j(j − k)u(j)2u(k)2. [26]
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Since u(j)2u(k)2 ≥ 0, the sum is non-negative (it is zero only when u has one non-zero entry). Since ul is equal to the first half
of ul−1, its variance (to leading order) is given by the same formula with the same values, except N is cut in half, i.e., ε is
doubled. Based on the leading order expansion, the variance of ul will be a factor of four greater than that of ul−1. Motivated
by this property of conventional wavelets, in DDWD we decrease λ2 by a factor of four from one stage to the next, maintaining
a consistent level of penalization against the variance across stages.

B. Solving the constrained maximization problem. Employing the method of Lagrange multipliers yields a necessary condition
for a local optimum to the constrained maximization problem without an obvious solution. Consequently, we reformulate the
problem to make it amenable to gradient-based optimization.

Recall that the orthogonality constraints can be stated in the Fourier domain as

|û(k)|2 + |û(k +N/2)|2 = 2 for k = 0, 1, . . . , N/2− 1. [27]

Let û(k) = rke
iθk . Since u is real and N is even, we know that

θ0 = θN/2 = 0 or π, [28]
θN−k = −θk for k = 1, . . . , N/2− 1, [29]
rN−k = rk for k = 1, . . . , N/2− 1. [30]

Substituting the polar representation for û(k) into the constraints gives

r2
k + r2

N/2−k = 2 for k = 0, 1, . . . , N/2− 1. [31]

These constraints are quadratic in rk. Notice that rk and rN/2−k are constrained to lie on a circle of radius
√

2 (actually on the
upper-right quadrant of the circle since rk, rN/2−k ≥ 0). We can, therefore, replace these constraints by defining γk such that
rk =

√
2 cos γk and rN/2−k =

√
2 sin γk, and the constraints become 0 ≤ γk ≤ π/2. In fact, we can remove these constraints on

γk; this allows for negative values of rk, which creates redundancies (i.e., rkeiθk = −rkei(θk+π)), but simplifies the optimization
task since it becomes unconstrained.

Because u is real, some of the constraints are redundant. For example, r2
k + r2

N/2−k = 2 gives the same constraint for k = 1
and k = N/2− 1. The following are the non-redundant constraints,

N divisible by 4:
{
r2
k + r2

N/2−k = 2 for k = 0, . . . , N/4− 1
rN/4 = 1

[32]

N not divisible by 4: r2
k + r2

N/2−k = 2 for k = 0, . . . , N−2
4 . [33]

Therefore, to find the optimal u, we only have to optimize γk for k = 0, . . . , N/4− 1 if N is divisible by 4, or until (N − 2)/4 if
N is not divisible by 4, and θk for k = 1, . . . , N/2− 1. We do so using gradient-based optimization, and the constraints are
automatically satisfied because of our change of coordinates.

Besides turning the constrained optimization problem into an unconstrained one, another nice feature of this formulation is
that it allows us to directly impose sparsity in the frequency domain (by setting certain γk equal to 0 or π/2, although we do
not pursue this avenue in the present work). It also allows us to force the wavelets ψ−l,k to have zero mean by setting γ0 = 0,
as for wavelets on R, but we will generally not enforce this. We note that the first term in the objective function, uTAu, is not
convex in the optimization variables {γk} and {θk}, so we generally find local optima. For all the results shown in this work,
we have performed several trials with random initial guesses for the optimization variables. We have found the values of the
objective function to be consistent across trials, suggesting that bad local optima may not be a problem.

3. Parallels with convolutional neural networks

It is well known that PCA is equivalent to a linear autoencoder, in the sense that a linear autoencoder learns to span the
same subspace as PCA (4). However, PCA provides additional structure and knowledge, namely an orthogonal basis for the
subspace, the energy associated with each basis element, and each basis element satisfies an optimality principle; these features
make the results of PCA highly interpretable.

Similarly, the DDWD and its inverse are together equivalent to a linear convolutional autoencoder with special structure.
Figure S5 shows how the discrete wavelet transform and its inverse can be realized as neural networks. In the DDWD, the
generators are learned from data. The forward transform may be thought of as an encoder, and the inverse transform may
be thought of as a decoder. The encoder and decoder consist of a series of convolutions. In between convolutions, there are
downsampling or upsampling steps, akin to the pooling steps used in convolutional neural networks. In the encoder, the result
of a layer is directly fed to the final output, and in the decoder, different parts of the input are directly fed to different layers;
this is akin to skip connections. Notice that the neural network architectures induced by the forward and inverse transforms
incorporate three features that have been found to yield good results in the neural network literature: convolutions, pooling,
and skip connections.

We also point out some differences. The major difference is that the DDWD is linear. Another difference is that the DDWD
is trained quite differently from convolutional autoencoders. In particular, we sequentially maximize several layer-wise objective
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functions, learning one layer at a time, rather than learning all filters at once by maximizing a single objective function. As
in PCA, the basis elements learned by the DDWD are orthogonal, energy can be easily associated with each basis element,
and each stage satisfies an optimality principle, altogether making the results highly interpretable. We hope that the network
architecture induced by the discrete wavelet transform, and the training process of the DDWD, will inspire developments in
convolutional neural networks and autoencoders.

4. Additional results

Here we present additional results for the Kuramoto-Sivashinsky and homogeneous isotropic turbulence datasets. Since it will
be useful in understanding the similarity results, we first describe how to produce the action of the similarity/dilation operator,
which we denoted S in the main text, on a wavelet.

A. Similarity/dilation. Following Section 1A, we may develop explicit relations for the wavelets,

ψ−l = u1 ∗ U(u2) ∗ U2(u3) ∗ . . . ∗ U l−2(ul−1) ∗ U l−1(vl), [34]
φ−l = u1 ∗ U(u2) ∗ U2(u3) ∗ . . . ∗ U l−2(ul−1) ∗ U l−1(ul). [35]

To be clear, ψ−1 = v1 and φ−1 = u1. The similarity-transformed wavelets are produced by applying the folding lemma Eq. (16)
to produce the next wavelet generator, that is,

Sψ−l = u1 ∗ U(u2) ∗ U2(u3) ∗ . . . ∗ U l−2(ul−1) ∗ U l−1(ul) ∗ U l(Fl(vl)), [36]
Sφ−l = u1 ∗ U(u2) ∗ U2(u3) ∗ . . . ∗ U l−2(ul−1) ∗ U l−1(ul) ∗ U l(Fl(ul)), [37]

where the action of Fl : CN/2l−2
→ CN/2l−1

is defined by Eq. (16). (Since ul and vl are related by Eq. (10), the folding
lemma Eq. (16) may be applied to both.) Note that Sψ−l and ψ−l−1 are closely related, the only difference being that Sψ−l
uses Fl(vl) produced by the folding lemma in place of the computed vl+1; an analogous relation holds between Sφ−l and φ−l−1.

B. Kuramoto-Sivashinsky. The computed wavelets and their power spectra for the Kuramoto-Sivashinsky dataset are shown
for all variance penalties (λ2 = 0, 0.01, and 0.1) in Figure S6. Note that the lowest stages (where we push the most energy)
comprise the same wavenumbers no matter the variance penalty. This demonstrates the robustness of the DDWD in pushing
the dominant (most energetic) length scales of the system to the lowest stages.

Figure S7 shows the energy contained in each subspace for all variance penalties. The energy curves are perceptually
indistinguishable, again demonstrating the robustness of the DDWD. Note that the energy curve is non-monotonic. The reason
for this non-monotonicity is that V−6 and W−6 have dimension 1, W−5 has dimension 2, and W−4 has dimension 4. In other
words, the energy contained in W−4 is spread amongst the 4 translates of ψ−4, whereas all of the energy contained in W−6 is
attributed to ψ−6, and similarly for the other subspaces.

Figure S8 shows how similar the wavelets are from stage to stage.

C. Homogeneous isotropic turbulence. For the HIT data, the computed wavelets and their power spectra are shown for all
variance penalties (λ2 = 0, 10−1, 100, and 101) in Figure S9. DDWD successfully pushes the high energy low wavenumbers
to the lower stages, no matter the variance penalty, demonstrating the robustness of the DDWD. As the variance penalty
increases, localization in the Fourier domain is exchanged for localization in the spatial domain, and the cutoffs for each scale
in the Fourier domain become more gradual. The power spectra of the finest scale wavelets are spread out in many patches,
and we have found that they differ somewhat across random trials. The reason that the DDWD is not as robust to the highest
wavenumbers for the HIT dataset is that they comprise a very small fraction of the dataset’s energy (the energy in k = 1000 is
more than eight orders of magnitude less than the energy in k = 1), near or below tolerances in the optimization algorithms
used.

Figures S10 and S11 show how similar the wavelets are from stage to stage for λ2 = 100 and 101, respectively. In particular,
the localized wavelets in stages 4 ≤ l ≤ 8 are nearly identical across this range of λ. This is also the range over which the
wavelets show strong self-similarity from stage to stage, indicating that it is a robust feature derived from the data.
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Fig. S1. Change of basis to and from a first-stage wavelet basis. The two vectors in the middle give the first-stage wavelet coordinates of z.
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Fig. S2. Change of basis to and from a second-stage wavelet basis. The dashed line separates the forward and inverse transforms.
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Fig. S3. Subspaces from Haar wavelets on R8, analogous to Figure 2A in the main text.
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Fig. S4. Daubechies-2 wavelets on R25
.
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A

B

Fig. S5. Discrete wavelet transform (A) and inverse discrete wavelet transform (B) as neural networks. The example is for a signal with eight entries. For data-driven wavelets,
the generators are learned from data.
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Fig. S6. Kuramoto-Sivashinsky wavelets (top row), offset from each other by 0.5, and their power spectra (bottom row). Colouring as in Figure 2A in the main text. The variance
penalties are λ2 = 0 (A–B), 0.01 (C–D), and 0.1 (E–F).
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Fig. S7. Energy of the Kuramoto-Sivashinsky dataset contained in each stage for all variance penalties considered (λ2 = 0, 0.01, and 0.1; only the result for λ2 = 0.1 (red)
can be seen).
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Fig. S8. Comparison between computed Kuramoto-Sivashinsky wavelets (λ2 = 0.1) and ones obtained by dilating and rescaling the wavelet from the previous stage (A–G),
and the level of similarity across all stages (H).
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Fig. S9. HIT wavelets (top row), offset from each other by 0.25, and their power spectra (bottom row). Colouring as in Figure 2A in the main text. The variance penalties are
λ2 = 0 (A–B), 10−1 (C–D), 100 (E–F), and 101 (G–H).
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Fig. S10. Comparison between computed HIT wavelets (λ2 = 100) and ones obtained by dilating and rescaling the wavelet from the previous stage (A–M), and the level of
similarity across all stages (N).
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Fig. S11. Comparison between computed HIT wavelets (λ2 = 101) and ones obtained by dilating and rescaling the wavelet from the previous stage (A–M), and the level of
similarity across all stages (N).
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