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Distributed flexibility in inertial swimmers
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We study a linear inviscid model of a passively flexible swimmer with distributed
flexibility, calculating its propulsive performance and optimal distributions of
flexibility. The frequencies of actuation and mean stiffness ratios we consider span a
large range, while the mass ratio is fixed to a low value representative of swimmers.
We present results showing how the trailing edge deflection, thrust coefficient, power
coefficient and efficiency vary with frequency, mean stiffness and stiffness distribution.
Swimmers with distributed flexibility have the same qualitative features as those with
uniform flexibility. Significant gains in thrust can be made, however, by tuning the
stiffness such that a resonant response is triggered, or by concentrating stiffness
towards the leading edge if resonance cannot be triggered. To minimize power, the
opposite is true. Meaningful gains in efficiency can be made at low frequencies by
concentrating stiffness away from the leading edge, since doing so induces efficient
travelling wave kinematics. We also speculate on the effects of a finite Reynolds
number in the form of streamwise drag. The drag adds an offset to the net thrust
produced by the swimmer, causing efficiency-maximizing distributions of flexibility
to tend towards thrust-maximizing ones, representative of what is found in nature.

Key words: swimming/flying, flow–structure interactions, propulsion

1. Introduction
Animal swimming and flight are complex. To make headway in understanding how

animals swim and fly, we often abstract the coordinated motion of entire bodies to
plates flapping in a fluid; a vast literature studies this simplified canonical problem
(see the reviews in Triantafyllou, Triantafyllou & Yue (2000), Wang (2005) and Wu
(2011), for example). A salient feature of the fins and wings of swimming and flying
animals is flexibility. Flexibility allows fish to use fine musculature to actively control
their kinematics to some degree (Fish & Lauder 2006), and allows birds to morph
their wings (Bergmann 1839), but also passively influences kinematics through elastic
restoring forces.

Simple flapping plate models of swimming and flight incorporate flexibility by
modelling the plate as a uniformly elastic material, allowing it to deform according
to the fluid and elastic forces it experiences. In the context of forward propulsion,
we are most interested in the thrust that a flapping plate can produce, as well as
how efficiently it produces the thrust. Passive flexibility changes the thrust that

† Email address for correspondence: dfloryan@alumni.princeton.edu
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a flapping plate produces, as well as the efficiency of thrust production. It has
generally been found that, compared to rigid plates, uniformly flexible plates produce
greater thrust when actuated near a fluid–structure natural frequency, and less thrust
otherwise, but the efficiency of uniformly flexible plates is greater than that of rigid
plates over a broad range of frequencies and stiffnesses (Katz & Weihs 1978, 1979;
Alben 2008; Ferreira de Sousa & Allen 2011; Dewey et al. 2013; Quinn, Lauder &
Smits 2014; Floryan & Rowley 2018). While thrust generally exhibits local maxima
when actuating near natural frequencies, efficiency has been observed to exhibit
local maxima below natural frequencies, near natural frequencies and above natural
frequencies (Dewey et al. 2013; Moored et al. 2014; Quinn et al. 2014; Quinn,
Lauder & Smits 2015; Paraz, Schouveiler & Eloy 2016), as well as at frequencies
relatively far from a natural frequency (Michelin & Llewellyn Smith 2009; Vanella
et al. 2009; Ramananarivo, Godoy-Diana & Thiria 2011; Kang et al. 2011; Zhu, He
& Zhang 2014). We recently clarified that resonant behaviour in efficiency – at least
for swimmers, where the characteristic fluid mass is much greater than the body
mass – can arise only when viscous forces are present, or if nonlinear effects are not
negligible (Floryan & Rowley 2018).

The above studies consider plates for which the stiffness is uniform along the chord;
however, the flexibility of fins and wings of real animals is typically non-uniform. The
material properties of fins and wings may change along the chord (as the musculature,
fat content and skin changes, for example), as may the thickness. (Figure 17 in Fish &
Lauder (2006) shows a beautiful example of varying material properties and thickness
of the fluke of a bottlenose dolphin.) Flexibility may even be highly localized, as in
the veined wings of insects (Combes & Daniel 2003). We thus ask how distributed
(non-uniform, heterogeneous) flexibility affects thrust production and efficiency in
flapping plates, in contrast to uniform flexibility.

Only recently have people begun to explore how the distribution of flexibility
affects propulsion in flapping plates. Experiments tend to focus on biomimetic
flexibility distributions similar to fish fins, where the leading portion of the plate is
stiffer than the trailing portion. The literature includes results on distributions that
are fully biomimetic with pure pitching motions (Riggs, Bowyer & Vincent 2010),
stepwise constant distributions with pure heaving and zero angle of attack motions
(Lucas et al. 2015) and supposedly linear distributions with pure heaving motions
(Kancharala & Philen 2016); all of these experiments were for cases where the
characteristic fluid mass is much greater than the characteristic body mass, as in
swimmers. The experiments generally show that plates that are stiffer towards the
leading edge produce more thrust and do so more efficiently than plates that are
uniformly flexible. It is very important to note, however, that in the cited works, the
plates with uniform and distributed flexibilities had different mean stiffnesses, making
it difficult to distinguish between the effects of changes in mean stiffness and changes
in stiffness distribution. Being able to make the distinction is important because, as
we will show later, changing the mean stiffness can significantly change natural
frequencies, which have significant effects on thrust and efficiency, and changing the
mean stiffness also changes the off-resonance behaviour in efficiency (Alben 2008;
Floryan & Rowley 2018).

Computational works have also analysed how the distribution of flexibility affects
propulsion. In most studies, the characteristic fluid mass is of the same order as
the characteristic body mass, as in fliers (many of these studies are motivated by
insect flight). Distributed flexibility has been modelled in several ways: as a uniform
elastic plate with virtual linear springs at several control points (the virtual linear
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springs attach the elastic sheet to points with a priori known motions, mimicking
veins in insect wings) (Shoele & Zhu 2013); as an elastic plate with varying material
properties (Moore 2015); and as an elastic plate with homogeneous material properties
but varying thickness (Yeh, Li & Alexeev 2017). Both Shoele & Zhu (2013) and Yeh
et al. (2017) found that plates with stiff leading edges produced thrust curves that
had lower, but broader, peaks than those of uniformly flexible plates, and that plates
with stiff leading edges were broadly more efficient than uniformly flexible plates.
Moore (2015) optimized the stiffness (mean and distribution) at fixed frequencies for
thrust, and found that a plate that is rigid except at the leading edge (where it has
a torsional spring) produced greater thrust than any other flexible plate (although the
thrust is not much greater than that produced by a plate with linearly distributed
flexibility). The only computational work directly applicable to swimmers, for which
the characteristic fluid mass is much greater than the characteristic body mass, is
Kancharala & Philen (2016), where the authors found that a stiffer leading edge
enhances thrust and efficiency for their kinematics.

Although several studies have shown that distributed flexibility can enhance the
propulsion of flexible flapping plates in some way, the mechanisms are unclear. In
particular, none of the studies mentioned above have controlled for mean stiffness,
which is known to significantly affect propulsion, so it is impossible to know how
the distribution of flexibility alone affects propulsion. The eigenvalues of a suitable
linear system can provide a basis to understand how the distribution of flexibility
affects propulsion, but this approach has not yet been pursued. Furthermore, the
literature has only given conditions that, if met, give rise to improvements in thrust
or efficiency, but this is far from a complete characterization of the effects of the
distribution of flexibility. For example, although we know that a plate with a stiff
leading edge operating at a certain frequency and mean stiffness produces greater
thrust than a uniformly flexible plate with a different mean stiffness, we cannot
generalize this statement to other cases, or conclude that other distributions do not
improve propulsion.

In this work, we attempt to characterize how distributed flexibility, in contrast to
uniform flexibility, changes the thrust production, power consumption and efficiency of
propulsion of flapping plates. We emphasize the role of the distribution of flexibility
– separate from its mean value – particularly how it alters natural frequencies and
resonance. We also calculate optimal stiffness distributions, and explain them in
light of the preceding analysis. To be clear, our own interests lie mainly in inertial
swimmers characterized by high Reynolds numbers and a large ratio of characteristic
fluid mass to body mass. This is in contrast to fliers, for example, where the mass
ratio is of order unity and higher. We employ a linear model of a passively flexible
swimmer, since doing so allows us to formally calculate natural frequencies of the
coupled fluid–structure system, and to stay in a dynamical regime where the notion
of resonance is clear.

For finite-amplitude swimmers, nonlinear effects may be important. The results of
Michelin & Llewellyn Smith (2009) suggest that the main effect of nonlinearity is
to effectively increase damping in the system, as resonant peaks weaken, broaden
and shift to lower frequencies with increasing amplitude of actuation. This effect is
verified in Goza, Floryan & Rowley (2020), where the authors explicitly delineate
linear and nonlinear effects with increasing amplitude. In addition, the authors find
that for large enough amplitudes, leading edge separation may occur, which can
drastically alter the performance characteristics from what one would expect through
linear predictions, echoing the results of Quinn et al. (2015). Therefore, our linear
results should extend qualitatively to finite-amplitude swimmers as long as leading
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FIGURE 1. Schematic of the problem. The varying colour represents the varying material
properties.

edge separation is avoided. For more details, we refer the reader to Goza et al.
(2020).

2. Problem description
Here, the set-up and assumptions are the same as in Moore (2017). Consider a two-

dimensional, inextensible elastic plate of length L and thickness d. The plate is thin
(d� L), and is transversely deflected a small amount Y from its neutral position, with
its slope Yx� 1. Under these assumptions, the dynamics of the plate is governed by
Euler–Bernoulli beam theory. The plate has density ρs and flexural rigidity B = EI,
where E is the Young’s modulus, I=wd3/12 is the second moment of area of the plate
and w is the width of the plate. We allow the properties of the plate to vary spatially;
that is, ρs, E and d are functions of x. The plate is immersed in an incompressible,
inviscid Newtonian fluid of density ρf . There is no flow along the width of the plate,
and far from the plate the flow is unidirectional and constant: U=Ui. The set-up is
altogether illustrated in figure 1.

The motion of the plate alters the velocity field of the fluid, whose forces in turn
modify the motion of the plate. The transverse position of the plate satisfies the Euler–
Bernoulli beam equation

ρsdwYtt + (BYxx)xx =w1p, (2.1)

where 1p is the pressure difference across the plate due to the fluid flow, subscript t
denotes differentiation with respect to time and subscript x denotes differentiation with
respect to streamwise position. The fluid motion satisfies the linearized incompressible
Euler equations

∇ · u= 0,
ρf (ut +Uux)=−∇p,

}
(2.2)

where u= ui+ vj. The above linearization is valid when the perturbation velocity u is
much smaller than U. Since the perturbation velocity depends on the plate’s vertical
velocity, its slope and the rate of change of its slope, the linear assumption holds for
small-amplitude motions of the plate.

We non-dimensionalize the above equations using L/2 as the length scale, U as the
velocity scale and L/(2U) as the time scale, yielding

2RYtt +
2
3(SYxx)xx =1p,
∇ · u= 0,

ut + ux =∇φ,

 (2.3)
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Distributed flexibility in inertial swimmers 888 A24-5

where

R(x)=
ρsd(x)
ρf L

, S(x)=
E(x)d(x)3

ρf U2L3
, φ = p∞ − p. (2.4a−c)

In the above, x, t, Y , u and p are now dimensionless, with the pressure non-
dimensionalized by ρf U2. The coordinates are aligned such that x=−1 corresponds
to the leading edge and x = 1 corresponds to the trailing edge; R is a ratio of
solid-to-fluid mass, and S is a ratio of bending-to-fluid forces and both are functions
of x. Note that 1φ =−1p.

The fluid additionally satisfies the no-penetration and Kutta conditions, which for
small-amplitude motions take the form

v|x∈[−1,1],y=0 = Yt + Yx,
|v||(x,y)=(1,0) <∞.

}
(2.5)

We impose heaving and pitching motions h and θ , respectively, on the leading edge
of the plate, while the trailing edge is free, resulting in boundary conditions

Y(−1, t)= h(t), Yx(−1, t)= θ(t), Yxx(1, t)= 0, Yxxx(1, t)= 0. (2.6a−d)

The fluid motion resulting from the actuation of the leading edge of the plate imparts
a net horizontal force onto the plate. In other words, energy input into the system
by the actuation of the leading edge is used to generate a propulsive force. The net
horizontal force (thrust) on the plate is

CT =

∫ 1

−1
(1p)Yx dx+CTS, (2.7)

where CTS is the leading edge suction force given by

CTS =
π

32
lim

x→−1
γ 2(1− x2). (2.8)

Above, γ is the jump in tangential velocity across the plate, i.e. the bound vortex
sheet strength (Alben 2009). Ultimately, we use the formula given in Moore (2017).
The power input is

CP =−

∫ 1

−1
(1p)Yt dx. (2.9)

The leading edge suction force used is the limit of the suction force on a leading edge
of small but finite radius of curvature, in the limit that the radius tends to zero. The
leading edge suction force is a reasonable model of the actual flow when it is attached
(Saffman 1992), so we have chosen to include it. In terms of dimensional variables,
CT = T/( 1

2ρf U2Lw) and CP = P/( 1
2ρf U3Lw), where T and P are the dimensional net

thrust and power input, respectively. Finally, the Froude efficiency is defined as

η=
TU
P
=

CT

CP
, (2.10)

where the overbar denotes a time-averaged quantity.
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888 A24-6 D. Floryan and C. W. Rowley

Re 〈R〉 =
〈ρsd〉
ρf L

〈S〉 =
〈Ed3
〉

ρf U2L3
f ∗ =

fL
U

h0 θ0

Inviscid 0.01 10−2–102 10−1–102 2 (linear) 1 (linear)

TABLE 1. Parameter values used in this work.

In this work, we restrict ourselves to actuation at the leading edge that is sinusoidal
in time, that is,

h(t)=Re{h0eiσ t
},

θ(t)=Re{θ0eiσ t
},

}
(2.11)

where σ = πLf /U is the dimensionless angular frequency, f is the dimensional
frequency in Hz, i=

√
−1 and Re denotes the real part of a complex number. Since

the system is linear in Y , the resulting deflection of the plate and fluid flow will also
be sinusoidal in time. We leave the details of the method of solution to appendix A,
noting that all calculations in this work used either 64 or 128 collocation points. Low
values of mean stiffness coupled with high actuation frequencies lead to deflection
patterns with short wavelengths that are not adequately resolved by the number of
collocation points used; we have been careful to make note of and remove such cases
from the presented results. The method to calculate the eigenvalues of the system is
detailed in appendix B, and some useful formulas for the numerical method used are
given in appendix C.

3. Parameters and scope
The system parameters we use will critically affect the phenomena we observe. We

thus take the opportunity here to explicitly state the parameters we use in this work,
noting some attendant qualitative features.

The system is parameterized by its Reynolds number, Re, mass (mean and
distribution), stiffness (mean and distribution) and frequency and amplitude of
actuation. Our flow is inviscid, but we will briefly remark on the effects of a
finite Reynolds number later. The non-dimensional quantities in (2.4) show that the
mass and stiffness of the system depend on both the solid and the fluid. Underwater
swimmers tend to be thin and neutrally buoyant, so the mass ratio R is generally
quite low; this is in contrast to fliers, for example, whose mass ratios are of order
unity and higher. Since our interests lie in swimmers, we take the mean mass ratio to
be 〈R〉 = 0.01 throughout, where 〈·〉 denotes the spatial mean along the length of the
plate. The stiffness of the system is characterized by the stiffness ratio S; we vary the
mean stiffness of the system from very flexible (〈S〉� 1) to very stiff (〈S〉� 1). We
vary the frequency of actuation so that it covers multiple natural frequencies of the
system. Since our system is linear, scaling the amplitude by some factor will simply
scale the flow and deflection fields by the same factor. In this sense, amplitude does
not matter in our problem, so we set the heaving and pitching amplitudes so that
the maximum deflection of the trailing edge of a rigid plate is equal to the length
of the plate. The amplitude affects both thrust and power quadratically, and does not
affect efficiency in this linear setting. We do not consider nonlinear effects caused by
large amplitudes. Since we study an infinitesimally thin plate, we do not consider any
geometric effects, which could reasonably be argued to be important. The parameters
we use in the following sections are summarized in table 1.
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1.01
Heaving Pitching

1.00

0.99-1 0
dR*/dx

1

CT

CP

˙

1.01

1.00

0.99-1 0
dR*/dx

1

(a) (b)

FIGURE 2. Thrust coefficient, power coefficient and efficiency as a function of the mass
distribution for a (a) heaving and (b) pitching plate for 〈R〉 = 0.01, S≡ 1 and f ∗= 1. The
mass distribution R is linear, and values are normalized by their value when the mass is
uniformly distributed.

As shown in Floryan & Rowley (2018), the value of the mean mass ratio 〈R〉
qualitatively changes the propulsion of a flapping plate. At low values, however,
the mass of the plate is dominated by the mass of the fluid. With 〈R〉 = 0.01, we
expect the mass of the plate to have little effect on propulsion, and consequently the
distribution of mass should also have little effect on propulsion, at least for cases
where there is not a large amount of mass concentrated in a small area. In figure 2,
we plot the thrust coefficient, power coefficient and efficiency as functions of the
mass distribution for 〈R〉 = 0.01, S ≡ 1 and f ∗ = 1 for heaving and pitching plates.
Here, we have taken the mass to be distributed linearly, in which case it is described
by a single parameter dR∗/dx, where R= 〈R〉R∗, R∗ is the distribution of mass, and
hence 〈R∗〉 = 1. Note that dR∗/dx ∈ [−1, 1] (otherwise a section of the plate would
have negative mass), where dR∗/dx = −1 corresponds to a massive leading edge,
dR∗/dx = 0 corresponds to uniformly distributed mass and dR∗/dx = 1 corresponds
to a massive trailing edge. The thrust coefficient, power coefficient and efficiency in
figure 2 have been normalized by their values when the mass is uniformly distributed.
At such low 〈R〉 the distribution of mass matters little; this is in contrast to stiffness,
whose distribution can greatly affect thrust, power and efficiency, as shown in figure 3
for the same mean parameter values as used in figure 2. Accordingly, we will take
R ≡ 0.01 in all results below. We expect our results to hold for low mass ratios
(R . 0.1). We will allow the stiffness to vary in space, with the mean value given
by 〈S〉 and the distribution given by S∗. The distribution S∗ can be conveniently
described as a linear combination of Legendre polynomials,

S∗ =
∑

i

ciPi, (3.1)

the first few of which are

P0(x)= 1, P1(x)= x, P2(x)= 1
2(3x2

− 1). (3.2a−c)

Legendre polynomials are convenient because they are orthogonal on x∈ [−1, 1] with
weighting function 1. Consequently, we can fix 〈S∗〉 = 1 by fixing the coefficient of
the first Legendre polynomial P0 equal to 1.
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FIGURE 3. Thrust coefficient, power coefficient and efficiency as a function of the
stiffness distribution for a (a) heaving and (b) pitching plate for R ≡ 0.01, 〈S〉 = 1 and
f ∗ = 1. The stiffness distribution S is linear, and values are normalized by their value
when the mass is uniformly distributed.

4. Inviscid results
In the Introduction, we asked how distributed flexibility modifies propulsion in

comparison to uniform flexibility. Before presenting our results on the kinematics
and propulsive characteristics of flapping plates with distributed flexibility, we will
briefly review the results for uniform flexibility from Floryan & Rowley (2018) in
order to contextualize our results. All of our results for uniformly flexible plates will
be presented relative to rigid plates. For example, we will present the mean thrust
that a uniformly flexible plate produces relative to the mean thrust that an otherwise
identical rigid plate produces.

4.1. Propulsive characteristics of flapping plates with uniform flexibility
The amplitude of the trailing edge deflection, the mean thrust coefficient and the mean
power coefficient all exhibit the same qualitative behaviour in the frequency–stiffness
plane. For reference, we have plotted the trailing edge amplitude in figure 4. For
mid-to-high values of the reduced frequency and stiffness ratio, ridges of local
maxima are apparent. These ridges coincide with the natural frequencies (imaginary
parts of the eigenvalues) of the system, indicating a resonant response. In this region
of the frequency–stiffness plane, the natural frequencies are well approximated by the
quiescent natural frequencies, which are calculated in the limit where the bending
velocity is large compared to the fluid velocity; we provide more details in § B.2.
The eigenvalues are lightly damped (small angle relative to the imaginary axis) and
well separated, leading to the sharp ridges observed. The natural frequencies increase
as the stiffness ratio increases, conforming to our intuition based on a clamped
Euler–Bernoulli beam in vacuo, and can be shown to vary as f ∗ ∼ S1/2 in this
region of the frequency–stiffness plane. We will refer to these eigenvalues and the
corresponding eigenfunctions as Euler–Bernoulli modes.

The behaviour is quite different when the reduced frequency and stiffness ratio
are low, however. In this region of the frequency–stiffness plane, the resonant peaks
broaden and smear together as the stiffness ratio decreases because the eigenvalues
become more damped and move closer to each other. A ridge aligned in the direction
opposite to the other ridges emerges, with the frequency decreasing as stiffness
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FIGURE 4. Trailing edge amplitude as a function of reduced frequency f ∗ and stiffness
ratio S for a (a) heaving and (b) pitching plate with R ≡ 0.01 relative to that of an
equivalent rigid plate. Dashed white lines indicate where the flexible plate has the same
trailing edge amplitude as the equivalent rigid plate. Under-resolved areas have been
whited out. Results are for a uniformly flexible plate. The mean thrust and mean power
coefficients are qualitatively the same as the trailing edge amplitude.

increases, although we note that the mean thrust and mean power for a pitching
plate actually become negative here, in contrast to the trailing edge amplitude for a
pitching plate. Whereas the previous ridges coincided with the natural frequencies of
the Euler–Bernoulli modes, this ridge aligns with the natural frequencies of a ‘flutter
mode’, a mode that becomes unstable for low enough stiffness ratio and induces
flutter in the beam (as seen in a flag flapping in the wind, for example) (Alben
2008). With decreasing stiffness ratio, Euler–Bernoulli modes are essentially replaced
by flutter modes, with the replacement occurring at lower values of the stiffness
ratio for higher-order modes. The flutter modes are weakly damped compared to the
Euler–Bernoulli modes, leading to ridges aligned with the flutter modes.

The efficiency behaves very differently from the trailing edge amplitude, mean
thrust and mean power. In figure 5, we have plotted the difference in efficiency
between a uniformly flexible plate and an otherwise identical rigid plate. Whereas the
trailing edge amplitude, mean thrust and mean power have ridges of local maxima
aligned with the natural frequencies, the efficiency has a single broad region of high
values in the frequency–stiffness plane. Elsewhere in the plane, the local maxima in
thrust and efficiency cancel each other exactly, resulting in flat efficiency. The region
of high efficiency is aligned with the natural frequencies of the flutter mode. The
flutter mode induces travelling wave kinematics in the plate, which is known to be
highly efficient (Wu 1961). It is worth keeping in mind that increases in efficiency
are often accompanied by decreases in thrust, as is evinced by the efficiency plot
for a pitching flexible plate (figure 5b). For the pitching plate, the cutoff where
efficiency and thrust become negative is aligned with the natural frequencies of the
flutter mode; although the flutter mode induces efficient kinematics, the kinematics
lead to low thrust. We must be wary of low values of thrust when drag is present in
the system.
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FIGURE 5. Efficiency as a function of reduced frequency f ∗ and stiffness ratio S for a
(a) heaving and (b) pitching plate with R ≡ 0.01 relative to that of an equivalent rigid
plate. Dashed white lines indicate where the flexible plate has the same efficiency as the
equivalent rigid plate. Under-resolved areas and areas that produce negative efficiency have
been whited out. Results are for a uniformly flexible plate.
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FIGURE 6. Analogue of figure 4, for a stiffness distribution S∗(x)= 1− 0.9x (stiff leading
edge).

4.2. Propulsive characteristics of flapping plates with distributed flexibility
We begin by considering linear stiffness distributions, which are described by a single
parameter dS∗/dx. Qualitatively, flexible plates with linearly distributed stiffness are
the same as flexible plates with uniformly distributed stiffness. In figures 6 and 7, we
have plotted the trailing edge amplitude of plates with a stiff leading edge (dS∗/dx=
−0.9) and a soft leading edge (dS∗/dx = 0.9), respectively. As before, the trailing
edge amplitude is qualitatively representative of the mean thrust and power coefficients.
The plates with stiff and soft leading edges show the same trends as a uniformly
flexible plate: sharp resonant ridges for high reduced frequencies and stiffness ratios;
broadening and smearing of the ridges for low reduced frequencies and stiffness ratios;
and emergence of flutter modes for low stiffness ratios.

The behaviour of the efficiency does not change either. In figures 8 and 9, we have
plotted the difference in efficiency between plates with stiff and soft leading edges,
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FIGURE 7. Analogue of figure 4, for a stiffness distribution S∗(x)= 1+ 0.9x (soft leading
edge).
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FIGURE 8. Analogue of figure 5, for a stiffness distribution S∗(x)= 1− 0.9x (stiff leading
edge).

respectively, and a rigid plate. In both cases, the efficiency does not have any resonant
ridges, but does have a broad region of high values for low reduced frequencies and
stiffness ratios. Just as for the trailing edge amplitude, mean thrust coefficient and
mean power coefficient, the efficiency of plates with distributed flexibility follows the
same trends and for uniformly flexible plates.

By and large, there are no qualitative differences between plates with uniform
stiffness and plates with linearly distributed stiffness. The behaviour of the measures
of propulsive performance is dominated by the eigenvalues of the system, which
are qualitatively the same for different distributions of stiffness: Euler–Bernoulli
modes govern the performance when the stiffness ratio is high, whereas flutter modes
emerge and govern the performance when the stiffness ratio is low. We posit that
the behaviour does not change qualitatively for higher-order distributions of stiffness.
Although there are no qualitative differences, there may be important quantitative
differences, and we shall explore them in the next section.
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FIGURE 9. Analogue of figure 5, for a stiffness distribution S∗(x)= 1+ 0.9x (soft leading
edge).

5. Optimal stiffness distributions
As discussed in the Introduction, the literature has shown that varying the

distribution of stiffness quantitatively changes the propulsive performance of flexible
plates. In some cases (Moore 2015; Kancharala & Philen 2016), the stiffness
distribution was optimized in order to achieve the greatest thrust/speed or greatest
efficiency/lowest cost of transport. Optimal stiffness distributions differed qualitatively
for different mass ratios. For a low mass ratio, relevant to swimmers, concentrating
the stiffness towards the leading edge maximized thrust and efficiency (Kancharala &
Philen 2016), but the authors did not control for mean stiffness and only studied a
few frequencies. Here, we will calculate optimal stiffness distributions at every point
in the frequency–stiffness plane we have explored. In particular, for every combination
of reduced frequency and mean stiffness, we solve for the distribution of stiffness
that: (a) maximizes thrust; (b) minimizes power; and (c) maximizes efficiency.

For now, we will limit ourselves to quadratic distributions of stiffness, but we will
end with how we expect our results to generalize to higher-order distributions. The
distribution of stiffness can be written as

S∗ = P0 + c1P1 + c2P2, (5.1)

where Pi are the Legendre polynomials (written out in (3.2)), and ci are the parameters
we optimize over. The coefficient multiplying P0 is fixed to 1 so that 〈S∗〉 = 1.
Furthermore, we must restrict c1 and c2 so that the stiffness is non-negative on the
plate. The physical constraint of non-negativity leads to{

−3c2
2 + 6c2 − c2

1 > 0 if − 3c2 6 c1 6 3c2

1± c1 + c2 > 0 otherwise.
(5.2)

The feasible set is drawn in figure 10, along with some representative stiffness
distributions. The dark region contains stiffness distributions whose minima are at
the leading/trailing edge, and the light region contains stiffness distributions whose
minima are at an interior point of the plate.

Altogether, we have a nonlinear constrained optimization problem, with both the
objective function and the constraints being nonlinear in the optimization variables.
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FIGURE 10. (a) Feasible set of quadratic flexibility distributions. The dark region contains
stiffness distributions whose minima are at the leading/trailing edge, and the light region
contains stiffness distributions whose minima are at an interior point of the plate. We have
drawn some representative distributions in (b), corresponding to the circles in (a).

Since the feasible set is the union of an ellipse and a convex polyhedron, the
original optimization problem can be split into two optimization problems with linear
constraints (the ellipse can be described by linear constraints in polar coordinates).
We solve the optimization problem using MATLAB’s default interior-point algorithm
(MATLAB 2016). The objective functions used here are non-convex, so we use many
initial guesses to be confident that we have found a global optimum; this is feasible
only because of the speed of the numerical method.

5.1. Linear stiffness distributions
We begin by calculating optimal linear stiffness distributions, in which case the
only optimization parameter is the slope of the stiffness distribution, dS∗/dx. When
dS∗/dx < 0, we say that the plate has a stiff leading edge, and when dS∗/dx > 0,
we say that the plate has a soft leading edge. In figure 11, we have plotted the
optimal (thrust-maximizing) linear stiffness distribution, with the attendant optimal
mean thrust coefficient plotted in figure 12. There is a clear distinction in behaviour
between high-stiffness regions (where Euler–Bernoulli modes dominate the behaviour)
and low-stiffness regions (where flutter modes dominate), so we will discuss them in
turn.

When the Euler–Bernoulli modes dominate the response, the optimal stiffness
distribution at a given reduced frequency and mean stiffness ratio is the one that
has a natural frequency at that frequency of actuation. This is consistent with
our understanding of uniformly stiff plates, where actuating at a natural frequency
produces a local maximum in thrust. By tuning the stiffness distribution appropriately,
we can tune the natural frequencies of the plate so that they coincide with the
frequency of actuation. The ability to tune the locations of natural frequencies
broadens the resonant response, thereby broadening the regions of high thrust, as
evinced by figure 12. These results starkly contrast those for a plate with a fixed
stiffness distribution, where the resonant response is quite narrow (cf. figures 4, 6
and 7).

A resonant response is not always possible, however. Although being able to
modify the stiffness distribution greatly broadens the resonant ridges, there are still
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FIGURE 11. Thrust-maximizing linear stiffness distribution as a function of reduced
frequency f ∗ and mean stiffness ratio 〈S〉 for a (a) heaving and (b) pitching plate with
R ≡ 0.01. Under-resolved areas and areas that produce negative thrust have been whited
out.
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FIGURE 12. Thrust coefficient of a plate with the stiffness distribution shown in figure 11
relative to that of an equivalent rigid plate. Dashed white lines indicate where the flexible
plate has the same thrust coefficient as the equivalent rigid plate.

valleys of relatively low thrust in between the resonant ridges. This is because
natural frequencies of lower-order modes do not overlap with natural frequencies of
higher-order modes. To make the situation clear, we have re-plotted the optimal linear
stiffness distribution in figure 13 with the natural frequencies for stiff leading edge
(dS∗/dx = −0.9, green), uniformly stiff (dS∗/dx = 0, white) and soft leading edge
(dS∗/dx = 0.9, purple) plates overlaid as three sets of curves. Clearly, the natural
frequency of the first Euler–Bernoulli mode for a plate with a stiff leading edge is
nowhere close to the natural frequency of the second Euler–Bernoulli mode for a
plate with a soft leading edge, and so on for higher-order modes. The gap between
natural frequencies that are attainable with a linear stiffness distribution leads to the
valleys in optimal thrust between resonant ridges.

Moreover, for high-order modes the natural frequencies do not follow the pattern
we might expect. For the first mode, a plate with a soft leading edge has the lowest
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FIGURE 13. Same as in figure 11, but with natural frequencies overlaid as curves for
dS∗/dx=−0.9 (stiff leading edge, green), dS∗/dx=0 (uniformly stiff, white) and dS∗/dx=
0.9 (soft leading edge, purple).

natural frequency, and a plate with a stiff leading edge has the highest natural
frequency, as one might expect. By the third mode, however, a uniformly stiff plate
has a higher natural frequency than plates with stiff or soft leading edges. This
is more clearly shown in figure 14, where we have plotted the quiescent natural
frequencies for the first four modes as a function of the stiffness distribution. (For
just this plot, we have non-dimensionalized time using the bending time scale tbend,
as explained in § B.2, yielding ω∗=ωtbend, where ω= 2πf is the dimensional angular
frequency.) We have rescaled the quiescent natural frequencies so that they are
plotted relative to the values for a uniformly stiff plate. For third- and higher-order
modes, uniformly stiff plates have higher natural frequencies than plates with a stiff
(or soft) leading edge. Consequently, the relation between stiffness distribution and
natural frequency is not one-to-one: plates with a stiff leading edge may have the
same natural frequency as plates with a soft leading edge. Because of this, it is not
possible to represent a plate with distributed stiffness as a uniform plate with some
effective stiffness.

When multiple stiffness distributions have the same natural frequency, which
distribution is preferred? To provide insight into this question, we have calculated
the thrust produced by two plates, one with a stiff leading edge and one with a soft
leading edge, with both plates having the same third natural frequency. (The plate
with the stiff leading edge has dS∗/dx=−0.9, while the plate with the soft leading
edge has dS∗/dx varying from 0.416 to 0.445 over the range of 〈S〉 considered so
that its third natural frequency is the same as that of the plate with the stiff leading
edge.) The thrusts produced by the plates are plotted as surfaces in figure 15, with
the green surface corresponding to the plate with a stiff leading edge, and the purple
surface corresponding to the plate with a soft leading edge. The surfaces are plotted
on top of each other so that the surface that is visible from above has greater thrust.
When heaved around the third natural frequency, the plate with a stiff leading edge
produces more thrust than the plate with a soft leading edge except for a very tight
range of frequencies centred about the natural frequency, as shown in the close-up
view. When pitched around the third natural frequency, the plate with a stiff leading
edge produces more thrust than the plate with a soft leading edge at all frequencies
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FIGURE 14. First four quiescent natural frequencies as a function of the stiffness
distribution. The natural frequencies have been normalized by the natural frequencies of
a uniformly stiff plate, dS∗/dx= 0.
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FIGURE 15. Thrust coefficient as a function of reduced frequency f ∗ and mean stiffness
ratio 〈S〉 for a (a) heaving and (b) pitching plate with R ≡ 0.01. The green surface
corresponds to a plate with a stiff leading edge (dS∗/dx=−0.9), and the purple surface
corresponds to a plate with a soft leading edge and matched third natural frequency
(dS∗/dx ∈ [0.416, 0.445]).

near the natural frequency. Except when actuated right at the natural frequency, the
plate with a stiff leading edge is preferred over the plate with a soft leading edge
and equal natural frequency when it comes to thrust production.

In a similar vein, which stiffness distribution is preferred when the plate is actuated
away from a resonant frequency, that is, in the resonant gaps seen in figure 12? The
results show that a plate with a stiff leading edge is always preferred. In the resonant
gaps, plates with a stiff leading edge produce the greatest trailing edge amplitude,
leading to the greatest thrust production. This is true in the entire region of the
frequency–stiffness plane dominated by Euler–Bernoulli-type behaviour: the stiffness
distribution that produces the greatest trailing edge amplitude also produces the
greatest thrust.

The last observation we make about optimal thrust production in the region
dominated by Euler–Bernoulli behaviour concerns the difference between heaving and
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FIGURE 16. Analogue of figure 12, but compared to a plate with uniformly distributed
stiffness instead of a rigid plate.

pitching plates. For a heaving plate, the regions where a soft leading edge is preferred
are more expansive than for a pitching plate. In particular, regions where a very soft
leading edge is preferred for a heaving plate are replaced by a stiff leading edge
for a pitching plate (these are regions where the frequency of actuation is close but
not equal to a natural frequency of a plate with a soft leading edge). To understand
why, consider a plate starting at rest with a soft leading edge in the limiting case
dS∗/dx = 1. In this case, the stiffness at the leading edge is zero. When we pitch
such a plate at the leading edge, no moment will be generated at the leading edge
since the stiffness there is zero. Consequently, there will be no deflection, the plate
will remain parallel to the flow, and thus no thrust will be generated. When we heave
such a plate, no moment will be generated at the leading edge, but the plate still
needs to satisfy the boundary condition at the leading edge. The plate will, therefore,
take on something of a sideways L shape, so it will be at an angle to the flow near
the leading edge. Because the plate is at an angle to the flow, the fluid will apply a
force to the plate and cause it to deflect. Consequently, the plate is able to produce
thrust. Plates with very soft leading edges are thus better suited to heaving actuation
than pitching actuation.

The region dominated by flutter behaviour differs markedly from the region
dominated by Euler–Bernoulli behaviour. As we see in figure 11, a stiff leading
edge always produces the most thrust in the flutter region. As we explained in § 4.1,
in this region the eigenvalues become more damped and move closer to each other,
causing the resonant peaks to broaden and smear together. Resonant effects become
weak, and the off-resonant behaviour dominates the response. Just as in the region
dominated by Euler–Bernoulli behaviour, plates with a stiff leading edge produce the
greatest trailing edge amplitude, leading to the greatest thrust production. That being
said, the benefits over a plate with uniformly distributed stiffness are modest in this
region (the same is true in the resonant gaps), whereas the benefits are quite large
when the behaviour is dominated by Euler–Bernoulli modes, which we illustrate in
figure 16.

We now shift our attention to calculating the linear stiffness distribution that
minimizes power consumption. We have plotted the optimal (power-minimizing)
linear stiffness distribution in figure 17, with the attendant optimal mean power
coefficient plotted in figure 18. The results are essentially opposite of the results for
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FIGURE 17. Analogue of figure 11, but for a linear stiffness distribution minimizing
power.
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FIGURE 18. Power coefficient of a plate with the stiffness distribution shown in figure 17
relative to that of an equivalent rigid plate. Dashed white lines indicate where the flexible
plate has the same power coefficient as the equivalent rigid plate.

optimal thrust. In the region where Euler–Bernoulli modes dominate the response,
the optimal stiffness distribution is the one whose natural frequencies are far from
the frequency of actuation. When maximizing thrust, it was desirable to actuate at
resonance, whereas when minimizing power, it is undesirable to actuate at resonance.
This is consistent with our understanding of uniformly flexible plates, where actuating
at resonance maximizes trailing edge amplitude, thrust and power.

In the resonant gaps, where no stiffness distribution has a natural frequency, a soft
leading edge is always preferred since it produces a smaller trailing edge amplitude.
As we previously explained, a plate with a soft leading edge generally produces
a weaker moment at its leading edge, leading to smaller deflection and power
consumption. Pitching accentuates this behaviour since the plate is entirely driven by
a moment applied at the leading edge, explaining why a soft leading edge occupies
a larger area of the frequency–stiffness plane when the plate is pitching than when it
is heaving.
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FIGURE 19. Analogue of figure 18, but compared to a plate with uniformly distributed
stiffness instead of a rigid plate.

In the region dominated by flutter behaviour, a soft leading edge is also preferred.
The effects of resonance are diminished in this region since the eigenvalues dampen
and smear together. Just as in the resonant gaps, where resonance does not dictate
the optimal stiffness distribution, plates with a soft leading edge produce the smallest
trailing edge amplitude, leading to the smallest power consumption. The benefits over
a plate with uniformly distributed stiffness are modest when the plate is heaved, but
pronounced when pitched, as we illustrate in figure 19. In contrast, the benefits are
great in the region dominated by Euler–Bernoulli behaviour, as being able to tune
the stiffness distribution (and hence natural frequencies) allows us to avoid a resonant
condition.

Considering the optimal stiffness distributions for maximizing thrust and minimizing
power, it is not immediately clear what stiffness distribution will maximize efficiency.
In the former case, resonance is sought after as a maximizer of thrust, and a stiff
leading edge is preferred when resonance is not possible. In the latter case, resonance
is avoided, and a soft leading edge is preferred when resonance is not possible. We
present the optimal (efficiency-maximizing) stiffness distributions in figure 20, with
the attendant efficiency plotted in figure 21. When the plate is heaved, the optimizer
sometimes converged to a solution with absolute efficiency greater than unity, with
both thrust and power negative; we have whited out these cases.

Unexpectedly, the frequency–stiffness plane is essentially divided into two zones:
a lower zone where a plate with a soft leading edge is more efficient, and an upper
zone where a plate with a stiff leading edge is more efficient. (For a pitching plate,
a stiff leading edge is sometimes preferred near the zero-efficiency cutoff, where
the thrust also crosses zero, since plates with a stiff leading edge produce more
thrust than plates with a soft leading edge.) The boundary between the two zones
changes qualitatively at 〈S〉= 1, i.e. when the behaviour changes from Euler–Bernoulli
dominated to flutter dominated. In the Euler–Bernoulli region, the boundary is between
the first and second natural frequencies, and runs parallel to them. In this region,
elastic and added mass forces dominate the response, and the appropriate time scale
is the bending time scale (see § B.2). We therefore expect a boundary between regions
to appear when the actuation and bending time scales are nearly equal, consistent
with the results. In the flutter region, on the other hand, the boundary is near f ∗ = 1.
In this region, lift and added mass forces dominate the response, and the appropriate
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FIGURE 20. Analogue of figure 11, but for a linear stiffness distribution maximizing
efficiency.
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FIGURE 21. Efficiency of a plate with the stiffness distribution shown in figure 20 relative
to that of an equivalent rigid plate. Dashed white lines indicate where the flexible plate
has the same efficiency as the equivalent rigid plate.

time scale is the convective time scale. Although the boundary between zones in this
region corresponds to the actuation and convective time scales being nearly equal, we
caution that the limit 〈S〉→ 0 is a singular one.

Why is a soft leading edge preferred in the lower zone, and a stiff leading edge
preferred in the upper zone? To help answer this question, we appeal to the gains in
efficiency made over a uniformly flexible plate, plotted in figure 22. The results show
that meaningful efficiency gains are only made in the lower zone, i.e. by the plate
with a flexible leading edge. We therefore focus on explaining this zone.

For uniformly flexible plates, meaningful gains in efficiency over rigid plates
were made when flutter modes appeared. The flutter modes induce travelling wave
kinematics in the actuated plate, which are known to be efficient (Wu 1961). When
the leading edge is soft, we saw that the natural frequencies decrease compared to a
uniformly flexible plate. Moreover, flutter modes appear at higher mean stiffness ratios
for plates with a soft leading edge than for uniformly flexible plates. Consequently,
travelling wave kinematics can be induced in plates with a soft leading edge at higher
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FIGURE 22. Analogue of figure 21, but compared to a plate with uniformly distributed
stiffness instead of a rigid plate.

t t

(a) (b)

FIGURE 23. Ten snapshots, evenly spaced in time, of a heaving plate with (a) uniform
flexibility and (b) dS/dx∗ = 0.99 (soft leading edge) comprising one period of motion.
Both cases have the same heave amplitude, 〈S〉 = 8 and f ∗ = 0.2.

values of the mean stiffness ratio than for uniformly flexible plates. Indeed, the area
in the frequency–stiffness plane where the most significant gains in efficiency are
made in going from a uniform stiffness distribution to an optimal stiffness distribution
is where flutter modes are present for a plate with a soft leading edge but not present
for a uniformly flexible plate (at least when the plate is heaved). When the plate
is pitched, the region of greatest efficiency gains is shifted since a pitching plate
produces net drag at low enough frequency. The physical reason for the efficiency
gains, however, is unchanged: the plate with a soft leading edge has nice travelling
wave kinematics in that region. These kinematics are shown in figure 23 for a
heaving plate and figure 24 for a pitching plate and contrasted to the kinematics of
a uniformly flexible plate.

5.2. Quadratic stiffness distributions
We now add an additional degree of freedom, allowing the stiffness distribution to
vary quadratically along the chord. As it turns out, all of the optimal distributions for
the parameter values studied here lie near the boundary of the feasible set depicted in
figure 10. (When performing the optimization, we slightly shrunk the feasible set in
order to avoid problems associated with the stiffness being zero somewhere along the
chord.) We may therefore represent the optimal quadratic stiffness distributions by a
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(a) (b)

t t

FIGURE 24. Ten snapshots, evenly spaced in time, of a pitching plate with (a) uniform
flexibility and (b) dS/dx∗ = 0.99 (soft leading edge) comprising one period of motion.
Both cases have the same pitch amplitude, 〈S〉 = 0.5 and f ∗ = 0.3.

Concave up

Concave down

Stiff LE Soft LE

FIGURE 25. Colour coding of the boundary of the feasible set in figure 10.

single parameter describing the location along the boundary, as shown in figure 25. As
before, stiffness distributions with a stiff leading edge are coded as green and those
with a soft leading edge are coded as purple. In addition, stiffness distributions that
are concave up (edges stiffer than the interior) are coded as yellow and those that are
concave down (edges softer than the interior) are coded as blue. Distributions on the
horizontal line are linear, and distributions on the vertical line are symmetric about
the mid-chord.

In figure 26, we have plotted the optimal (thrust-maximizing) quadratic stiffness
distribution, with the attendant optimal mean thrust coefficient plotted in figure 27.
The overall trends are comparable to those for linear stiffness distributions. In the
region dominated by Euler–Bernoulli modes, the optimal stiffness distribution at
a given reduced frequency and mean stiffness ratio is the one that has a natural
frequency at that frequency of actuation. The additional degree of freedom in the
stiffness distribution gives more freedom to tune the natural frequency of the plate,
thereby broadening the resonant response and narrowing the resonant gaps. As for
linear distributions, a stiff leading edge is preferred when a resonant condition cannot
be reached, both in the region dominated by Euler–Bernoulli modes and the region
dominated by flutter modes. When distributions with a stiff or soft leading edge have
the same natural frequency, a stiff leading edge is again preferred. With the additional
degree of freedom in stiffness distribution, the natural frequencies of distributions with
stiff leading edges are able to cover a larger portion of the frequency–stiffness plane
than linear distributions. As a result, a larger portion of the frequency–stiffness plane
is green in figure 26 (cf. figure 11); this is especially evident for pitching motions,
where distributions with a soft leading edge have almost entirely disappeared.

We note that much of the frequency–stiffness plane has a yellow tint, reflecting
that a positive quadratic component of the stiffness distribution enhances the thrust.
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FIGURE 26. Thrust-maximizing quadratic stiffness distribution as a function of reduced
frequency f ∗ and mean stiffness ratio 〈S〉 for a (a) heaving and (b) pitching plate with
R ≡ 0.01. Under-resolved areas and areas that produce negative thrust have been whited
out.
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FIGURE 27. Thrust coefficient of a plate with the stiffness distribution shown in figure 26
relative to that of an equivalent rigid plate. Dashed white lines indicate where the flexible
plate has the same thrust coefficient as the equivalent rigid plate.

The reason is quite simple: a positive quadratic component sacrifices the stiffness of
the interior of the plate to increase the stiffness of the edges. In other words, the
leading edge can be made even stiffer than with just a linear stiffness distribution
while maintaining the same mean stiffness. The quadratic component of the stiffness
distribution allows us to concentrate the stiffness toward the leading edge, which we
have seen enhances thrust. The trends for quadratic stiffness distributions are the same
as for linear stiffness distributions. We posit that even higher-order distributions would
tend to further concentrate the stiffness at the leading edge.

When minimizing the power, the results mirror those for linear stiffness distributions.
The optimal quadratic stiffness distribution is plotted in figure 28, with the attendant
optimal mean power coefficient plotted in figure 29. Essentially, a soft leading
edge is preferred unless it creates a condition of resonance. In other words, the
results are opposite of those when maximizing thrust. We note that much of the
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FIGURE 28. Analogue of figure 26, but for a quadratic stiffness distribution minimizing
power.
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FIGURE 29. Power coefficient of a plate with the stiffness distribution shown in figure 28
relative to that of an equivalent rigid plate. Dashed white lines indicate where the flexible
plate has the same power coefficient as the equivalent rigid plate.

frequency–stiffness plane has a pink tint, reflecting a positive quadratic component of
the stiffness distribution. The positive quadratic component allows us to concentrate
the stiffness toward the trailing edge, making the leading edge softer than a linear
distribution could, thereby further decreasing power consumption. There are also
portions of the frequency–stiffness plane that are blue, with the stiffness being
distributed symmetrically about the mid-chord and concentrated toward the interior
of the plate. The blue regions largely replace regions where a uniform stiffness
distribution was preferred for linear distributions, and appear in the region dominated
by Euler–Bernoulli modes. In the blue regions, stiffness distributions with the
stiffness concentrated away from the leading edge apparently have a natural frequency
present in those regions, which would increase power consumption. The symmetric,
concave-down distribution is the best option as it still softens the leading edge
compared to the uniform distribution (although the leading and trailing edges are
equally stiff).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

49
D

ow
nl

oa
de

d 
fr

om
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 U
ni

ve
rs

ity
 o

f W
is

co
ns

in
-M

ad
is

on
 L

ib
ra

ri
es

, o
n 

16
 A

pr
 2

02
0 

at
 1

9:
20

:0
3,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2020.49
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Distributed flexibility in inertial swimmers 888 A24-25

f*

102

101

100

10-1

101100

¯S˘
10210-110-2

102

101

100

10-1

101100

¯S˘
10210-110-2

Distribution (heaving) Distribution (pitching)(a) (b)

FIGURE 30. Analogue of figure 26, but for a quadratic stiffness distribution maximizing
efficiency.
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FIGURE 31. Efficiency of a plate with the stiffness distribution shown in figure 30 relative
to that of an equivalent rigid plate. Dashed white lines indicate where the flexible plate
has the same efficiency as the equivalent rigid plate.

Overall, the trends are the same as for linear stiffness distributions: concentrate
stiffness away from the leading edge while avoiding resonance. For higher-order
stiffness distributions, we posit that the preferred distribution will continue to be the
one that most effectively concentrates stiffness away from the leading edge. Once the
order is high enough, it may be that at each point in the frequency–stiffness plane
there exists a distribution with a soft leading edge without a natural frequency at that
point in the frequency–stiffness plane.

Since a stiff leading edge generally maximizes thrust production and a soft leading
edge generally minimizes power consumption, it is not immediately clear what
stiffness distribution will maximize efficiency. The efficiency-maximizing stiffness
distributions are plotted in figure 30, with the attendant efficiency plotted in figure 31.
When the plate is heaved, the optimizer sometimes converged to a solution with
absolute efficiency greater than unity, with both thrust and power negative; we have
whited out these cases.
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FIGURE 32. Analogue of figure 31, but compared to a plate with uniformly distributed
stiffness instead of a rigid plate.

The results mirror those for linear stiffness distributions, with the frequency–
stiffness plane essentially divided into two zones: a lower zone where a plate with
a soft leading edge is more efficient, and an upper zone where a plate with a stiff
leading edge is more efficient. For a pitching plate, there is a small region near the
zero-thrust cutoff where a plate with a stiff leading edge is more efficient. For 〈S〉& 1,
boundary between the two zones runs parallel to the natural frequencies and is quite
broad compared to the same boundary for linear stiffness distributions. For 〈S〉 . 1,
the boundary between the two zones is irregular but still quite sharp. In most of the
frequency–stiffness plane, the optimal stiffness distributions have a positive quadratic
component, meaning that concentrating stiffness towards the edges is beneficial for
efficiency. This effect was also seen when maximizing thrust and minimizing power,
so we posit that it will continue to hold for higher-order stiffness distributions.

Again, only certain portions of the frequency–stiffness plane enjoy meaningful gains
in efficiency over a uniformly flexible plate, shown in figure 32. With the addition
of the quadratic component to the stiffness distribution, a significant portion of the
frequency–stiffness plane where a stiff leading edge is preferred enjoys meaningful
gains in efficiency over a uniformly flexible plate, whereas this was not the case
for linear stiffness distributions. Although we do not show it here for brevity, the
regions with meaningful gains in efficiency are those where efficient travelling wave
kinematics are induced by flutter modes.

5.3. Finite Reynolds number effects
We take the opportunity to briefly speculate on the effects of streamwise drag. Having
an offset drag in the system will move where the net thrust transitions from being
negative to positive to greater frequencies. Distributions with stiffness concentrated
toward the leading edge will still produce the greatest thrust, and the results for power
consumption will also be unaffected.

Efficiency is a different story, though. Drag can create peaks in efficiency nearby
where the net thrust transitions from being negative to positive (Floryan et al. 2017;
Floryan, Van Buren & Smits 2018). The presence of drag also makes the efficiency
quite sensitive to changes in the system. These two effects are present for both rigid
and flexible plates.
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For flexible plates, an additional effect emerges. As shown in figure 5, the efficiency
of flexible plates does not have any resonant peaks in the inviscid small-amplitude
regime, with the resonant peaks in thrust and power cancelling each other exactly.
Upon adding drag to the system, however, resonant peaks in efficiency emerge
(Floryan & Rowley 2018). The explanation is straightforward. In moving from a
non-resonant to a resonant condition in a system without drag, the mean thrust and
power coefficients effectively scale up by some factor a > 1. Since the efficiency
is the ratio of the two, the factor a appears in the numerator and denominator,
cancels, and there is no resonant peak. When drag is present, it reduces the baseline
non-resonant efficiency compared to the system without drag. In moving to a resonant
condition, the thrust and power scale up by the factor a, but the drag does not. The
net thrust, therefore, scales up by a factor greater than a, so the efficiency increases
at resonance. This effect creates local maxima in efficiency at resonance. Since drag
affects the system at first order, this effect of streamwise drag inducing resonant
peaks in efficiency should be robust to nonlinearities present at finite amplitudes.

The presence of streamwise drag will, therefore, have two effects on the efficiency-
maximizing stiffness distributions. The first is that it will wipe out the stiffness
distributions with a soft leading edge at low frequencies. At low frequencies, the
distributions with a soft leading edge that are highly efficient also produce very little
thrust. The drag will be comparable in magnitude to the thrust produced by plates
with a soft leading edge, causing the net thrust (and therefore the efficiency) to
plummet. Since plates with a stiff leading edge produce greater thrust, they are more
robust to the effects of drag and will be favoured in the presence of drag over plates
with a soft leading edge.

The second effect occurs far from where the net thrust transitions between
negative and positive. Since drag induces a resonant behaviour in efficiency, the
efficiency-maximizing stiffness distribution will take advantage of this resonant effect.
Consequently, the efficiency-maximizing stiffness distribution will tend towards the
thrust-maximizing stiffness distribution. Altogether, the presence of drag will make
the efficiency-maximizing stiffness distribution tend towards the thrust-maximizing
stiffness distribution everywhere in the frequency–stiffness plane.

6. Conclusions

In this work, we studied a linear inviscid model of a passively flexible swimmer
with distributed flexibility, valid for small-amplitude, low-frequency motions where
there is no separation. We were careful to separate the effects due to mean stiffness
from those due to the distribution of stiffness. The frequencies of actuation and mean
stiffness ratios we considered spanned a large range, while the mass ratio was mostly
fixed to a low value representative of swimmers. For low values of the mean mass
ratio, the spatial distribution of mass matters little, but for mass ratios of order unity
and higher the spatial distribution may matter. The results presented in this work are
therefore applicable to swimmers, and care should be taken in extending the results
to fliers.

Qualitatively, the trailing edge deflection, thrust coefficient, power coefficient and
efficiency vary similarly with mean stiffness and frequency for a plate with distributed
flexibility as they do for a plate with uniform flexibility. The trailing edge deflection,
thrust coefficient, and power coefficient showed sharp ridges of resonant behaviour
for reduced frequencies f ∗ > 1 and stiffness ratios S > 1, where Euler–Bernoulli
modes govern the dynamics. For f ∗ < 1 and S < 1, however, the resonant peaks
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smeared together. The efficiency, on the other hand, did not show resonant peaks
anywhere in the frequency–stiffness plane, instead showing a broad region of high
values for f ∗ < 1 and S < 1, where flutter modes govern the dynamics and induce
efficient travelling wave kinematics.

Important quantitative differences between plates with distributed and uniform
flexibility exist, however, which we elucidated by optimizing the stiffness distribution.
To maximize thrust, the stiffness distribution should be tuned so that a natural
frequency coincides with the frequency of actuation, triggering a resonant response;
if this is not possible, then stiffness should be concentrated towards the leading edge.
To minimize power, the opposite conclusions hold: avoid resonance, or concentrate
stiffness away from the leading edge if resonance cannot be avoided. To maximize
efficiency, the stiffness should be concentrated towards the leading edge for high
frequencies and away from the leading edge for low frequencies. Meaningful gains in
efficiency over a uniformly flexible plate were only made for low frequencies. Here,
concentrating stiffness away from the leading edge induced efficient travelling wave
kinematics.

Lastly, we speculated on the effects of a finite Reynolds number in the form of
streamwise drag. Streamwise drag adds an offset drag to the system, which shifts the
zero-thrust cutoff to higher frequencies and creates resonant peaks in the efficiency
that are not present in the inviscid system. Consequently, efficiency-maximizing
distributions of flexibility will tend towards thrust-maximizing distributions everywhere
in the frequency–stiffness plane for real systems with drag; i.e., they will concentrate
stiffness towards the leading edge unless a resonant response can be triggered by
concentrating stiffness away from the leading edge. We note that animals tend to
concentrate stiffness towards the leading edge.
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Appendix A. Method of solution
We may write the deflection as a Chebyshev series with time-varying coefficients,

Y(x, t)=
1
2
β0(t)+

∞∑
k=1

βk(t)Tk(x), (A 1)

where Tk(x)= cos(k arccos x) is the Chebyshev polynomial of degree k. For coefficients
that vary sinusoidally in time, the solution to the flow is given in Wu (1961); we
repeat the basics of that analysis in the proceeding text.

Represent two-dimensional physical space (x, y) by the complex plane z = x + iy,
where i=

√
−1. There exists a complex potential F(z, t)= φ(z, t)+ iψ(z, t), with φ

and ψ harmonic conjugates, that is analytic in z and related to the complex velocity
w= u− iv through the momentum equation by

∂F
∂z
=
∂w
∂t
+
∂w
∂z
. (A 2)
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We use the conformal transformation

z=
1
2

(
ζ +

1
ζ

)
, (A 3)

to map physical space in the z-plane to the exterior of the unit circle in the ζ -plane.
This transformation maps the plate onto the unit circle. The complex potential can be
represented by a multipole expansion

F(ζ , t)= φ(ζ , t)+ iψ(ζ , t)= i

(
a0(t)
ζ + 1

+

∞∑
k=1

ak(t)
ζ k

)
. (A 4)

Evaluating on the unit circle ζ = eiθ gives

φ(ζ = eiθ , t)=
1
2

a0(t) tan
θ

2
+

∞∑
k=1

ak(t) sin kθ,

ψ(ζ = eiθ , t)=
1
2

a0(t)+
∞∑

k=1

ak(t) cos kθ.

 (A 5)

In physical space, on the surface of the plate we have

φ(z= x, t)=Φ±(x, t)=±
1
2

a0(t)

√
1− x
1+ x

±

∞∑
k=1

ak(t) sin kθ,

ψ(z= x, t)=Ψ (x, t)=
1
2

a0(t)+
∞∑

k=1

ak(t)Tk(x),

 (A 6)

where we have used x= cos θ ; ψ has equal values on the top and bottom since it is
even in θ , whereas φ is odd in θ and thus has a discontinuity in physical space.

At this point, it is convenient to explicitly write out the sinusoidal-in-time
dependence of the coefficients,

Y(x, t)=Re{eiσ tŶ(x)},
βk(t)=Re{eiσ tβ̂k},

ak(t)=Re{eiσ tâk}.

 (A 7)

The no-penetration condition can be written as

∂ψ

∂x

∣∣∣∣
y=0

=−

(
∂

∂t
+
∂

∂x

)2

Y, (A 8)

which simplifies to
DΨ =Re{−(iσ +D)2Ŷ}, (A 9)

where D = d/dx. Given Ŷ , this equation allows us to solve for all âk except â0. To
solve for â0, we begin by writing the vertical velocity on the surface of the plate as

v(z= x, t)=Re{eiσ tV̂(x)} =Re

{
eiσ t

(
1
2

V̂0 +

∞∑
k=1

V̂kTk(x)

)}
. (A 10)
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The no-penetration condition can then be written as

V̂ = (iσ +D)Ŷ. (A 11)

The coefficient â0 is given by

â0 =−C(iσ)(V̂0 + V̂1)+ V̂1, (A 12)

where

C(iσ)=
K1(iσ)

K0(iσ)+K1(iσ)
(A 13)

is the Theodorsen function, and Kν is the modified Bessel function of the second kind
of order ν. The expression for â0 is derived in Wu (1961).

With all of the âk known, the pressure difference across the plate can be written as

1p(x, t)=Re{eiσ tP̂(x)} =Re

{
eiσ t

(
â0

√
1− x
1+ x

+ 2
∞∑

k=1

âk sin kθ

)}
. (A 14)

We note that the pressure difference depends linearly on the deflection Ŷ .
Altogether, given the deflection Ŷ , we may calculate the coefficients âk. The

coefficients âk are used to calculate the pressure difference across the plate, which
alters the deflection of the plate via (2.3). The coupled fluid–structure problem must
be solved numerically.

A.1. Numerical method
Substituting the Chebyshev series (A 1) into the Euler–Bernoulli equation (2.3) gives
a fourth-order differential equation for Ŷ ,

− 2σ 2RŶ + 2
3 D2(SD2Ŷ)= P̂. (A 15)

The corresponding boundary conditions (2.6) are re-written as

Ŷ(−1)= h0, Ŷx(−1)= θ0, Ŷxx(1)= 0, Ŷxxx(1)= 0, (A 16a−d)

where h0 and θ0 are the heaving and pitching amplitudes at the leading edge,
respectively. We re-iterate that the pressure difference across the plate P̂ is a linear
function of the deflection Ŷ , and so (A 15)–(A 16) give a linear, homogeneous
boundary value problem for Ŷ . When solving for the deflection Ŷ , all infinite series
are truncated to the upper limit N.

The numerical method to solve the boundary value problem is given in Moore
(2017). The method is a pseudo-spectral Chebyshev scheme that uses Gauss–
Chebyshev points. The method is fast (O(N log N)) and accurate, avoiding errors
typically encountered when using Chebyshev methods to solve high-order differential
equations by pre-conditioning the system with continuous operators. Quadrature
formulas for the thrust and power coefficients in (2.7) and (2.9) are also given in
Moore (2017).
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Appendix B. Eigenvalues of the system
Here, we seek to determine the natural response of a flexible plate whose leading

edge is held clamped in an oncoming flow (Eloy, Souilliez & Schouveiler 2007; Alben
2008; Michelin & Llewellyn Smith 2009). This amounts to finding the eigenvalues and
eigenvectors of the system (2.3) with homogeneous boundary conditions (h(t)≡ 0 and
θ(t) ≡ 0). To do so, quantities that were previously written as Fourier–Chebyshev
expansions (the deflection, complex potential and velocity) are now written as
Chebyshev series with time-varying coefficients. Following the preceding analysis,
we arrive at the following equations:

2RYtt +
2
3(SYxx)xx =1p, (B 1)

Y(x, t)=
1
2
β0(t)+

∞∑
k=1

βk(t)Tk(x), (B 2)

1p(x, t)= a0(t)

√
1− x
1+ x

+ 2
∞∑

k=1

ak(t) sin kθ, (B 3)

∞∑
k=1

akT ′k =−
1
2
β̈0 −

∞∑
k=1

[
β̈kTk + 2β̇kT ′k + βkT ′′k

]
, (B 4)

where a dot denotes differentiation with respect to t and a prime denotes differentiation
with respect to x.

As before, we need an additional equation to determine a0. For now, we use (A 12)
but treat the Theodorsen function as a constant C. The coefficient a0 is then

a0 =−C(V0 + V1)+ V1, (B 5)

where Vk is the kth Chebyshev coefficient of the vertical velocity on the surface of
the plate. The Vk are obtained by evaluating the no-penetration condition (2.5),

1
2

V0 +

∞∑
k=1

VkTk =
1
2
β̇0 +

∞∑
k=1

[
β̇kTk + βkT ′k

]
. (B 6)

Treating a0 in this manner will yield a linear eigenvalue problem. After obtaining
the eigenvalues and eigenfunctions of the linear eigenvalue problem, we will use
those as initial guesses for the nonlinear eigenvalue problem, which will use the
full Theodorsen function. But first, we proceed with the description of the linear
eigenvalue problem.

We can write the equations more compactly as follows:

2R̃β̈ + 2
3 D2(S̃D2β)= P, (B 7)
P= Aa, (B 8)

Da=−β̈ − 2Dβ̇ − D2β, (B 9)
V = β̇ + Dβ, (B 10)

with (B 5) for a0. In the above, β is a vector of the Chebyshev coefficients of the
deflection Y , and similarly for P (pressure), a (potential) and V (vertical velocity).
P = Aa simply states that the Chebyshev coefficients of the pressure are linear
combinations of the coefficients ak, and D is the spectral representation of the
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differentiation operator. Quantities with a tilde over them are spectral representations
of multiplication in space, i.e. G̃ = FGF−1, where F is the linear operator that maps
spatial coordinates to spectral coordinates.

Putting everything together, we get the following ordinary differential equation:

2R̃β̈ + 2
3 D2(S̃D2β) = A

[
− D−β̈ − 2D−Dβ̇ + e1(e2 −Ce1 −Ce2)

Tβ̇

−D−D2β + e1(e2 −Ce1 −Ce2)
TDβ

]
, (B 11)

where D− is the spectral representation of the integration operator that makes the first
Chebyshev coefficient zero, and ek is the kth Euclidean basis vector. Equation (B 11)
can be written in state-space form as

d
dt

[
β

β̇

]
=

[
0 I

M−1A1 M−1A2

] [
β

β̇

]
,

M = 2R̃ + AD−,
A1 =−

2
3 D2S̃D2

− AD−D2
+ Ae1(e2 −Ce1 −Ce2)

TD,
A2 =−2AD−D + Ae1(e2 −Ce1 −Ce2)

T.

 (B 12)

When numerically solving the system, the infinite series are truncated to finite series.
In order to incorporate the four boundary conditions into (B 12), the last four rows of
the differential equation for β̈ are replaced by the boundary conditions. The system
is then

d
dt

[
I 0
0 I−4

] [
β

β̇

]
=

[
0 I

M−1A1 M−1A2

] [
β

β̇

]
, (B 13)

where I−4 is the identity matrix with the last four diagonal entries being zeros. The
last four rows of the right-hand side are replaced by the boundary conditions. We now
have a generalized eigenvalue problem to solve for the eigenvalues of the system.

B.1. Nonlinear eigenvalue problem
Having obtained the solution to the linear eigenvalue problem, we use it as an initial
guess for the nonlinear eigenvalue problem. The nonlinear eigenvalue problem is
obtained by making the ansatz

Y(x, t)=Re{eλtŶ(x)},

Ŷ(x)= 1
2 β̂0 +

∞∑
k=1

β̂kTk(x).

 (B 14)

This is the same as in appendix A, except that we allow the exponent λ to be any
complex number instead of just an imaginary number. Proceeding as in appendix B,
we arrive at the following equations:

2λ2R̃β̂ + 2
3 D2(S̃D2β̂)= P̂, (B 15)

P̂= Aâ, (B 16)

Dâ=−λ2β̂ − 2λDβ̂ − D2β̂, (B 17)

V̂ = λβ̂ + Dβ̂, (B 18)
â0 =−C(λ)(V̂0 + V̂1)+ V̂1, (B 19)

where the notation is as in appendix B.
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Putting everything together, we get the following equation:

2λ2R̃β̂ + 2
3 D2(S̃D2β̂) = A

[
− λ2D−β̂ − 2λD−Dβ̂ + λe1(e2 −C(λ)e1 −C(λ)e2)

Tβ̂

−D−D2β̂ + e1(e2 −C(λ)e1 −C(λ)e2)
TDβ̂

]
, (B 20)

where the notation is as in appendix B. Truncating the upper limit of the infinite series
to N, equation (B 20) gives N + 1 equations for N + 2 unknowns (the N + 1 elements
of β̂ and λ). We add an equation which normalizes β̂ in order to make the system
square. As before, the last four equations are replaced by the boundary conditions. We
solve for β̂ and λ using the Newton–Raphson method, using absolute and relative error
tolerances 10−6. For cases where the Newton–Raphson method did not converge, we
calculated the solution by looking at a global picture of the determinant of the system
and finding its roots.

We have previously validated our method for calculating eigenvalues of flexible
plates with uniform material properties (Floryan & Rowley 2018). To the best of our
knowledge, no prior work has calculated the eigenvalues of plates with non-uniform
material properties, giving us nothing to compare to. We note, however, that the same
computer code calculates the eigenvalues for plates with uniform and non-uniform
material properties, the former merely a special case of the latter.

B.2. Quiescent fluid
Consider the case where the plate is immersed in a quiescent fluid, i.e. where the
bending velocity is large compared to the fluid velocity. How do the eigenvalues
of the system change? To answer this question, we solve the Euler–Bernoulli and
Euler equations (2.1)–(2.2) in the limit of large bending velocity. In this limit, the
appropriate time scale to use is the bending time scale, which we choose to be√

3〈ρsd〉L4/(4〈Ed3〉). Non-dimensionalizing the solid and fluid equations using the
length scale L/2 and the bending time scale yields

R∗Ytt + (S∗Yxx)xx =
1

2〈R〉
1p,

∇ · u= 0,

ut +

√
3〈R〉
〈S〉

ux =∇φ,

 (B 21)

where R and S are as in (2.4), R∗ is the spatial distribution (mean 1) of R, S∗ is the
spatial distribution (mean 1) of S and φ = p∞ − p. In the above, x, t, Y , u and p are
now dimensionless, with the pressure non-dimensionalized by ρf 〈Ed3

〉/(3〈ρs d〉L2). The
limit of a quiescent flow corresponds to 〈R〉/〈S〉→ 0, or equivalently 〈Ed3

〉/〈ρs d〉L2
�

U2, which explicitly puts this limit in terms of velocity scales. For now, we keep all
terms and discuss the limit later. Intuitively, large values of the solid-to-fluid mass
ratio 〈R〉 make the fluid dynamics inconsequential to the deflection of the plate (a
heavy plate will be unaffected by the surrounding fluid).

The fluid additionally satisfies the no-penetration condition, stated as

v|x∈[−1,1],y=0 = Yt +

√
3〈R〉
〈S〉

Yx. (B 22)
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The boundary conditions on the plate are

Y(−1, t)= 0, Yx(−1, t)= 0, Yxx(1, t)= 0, Yxxx(1, t)= 0. (B 23a−d)

We solve for the fluid motion for a given deflection as in appendix A. Writing the
deflection as

Y(x, t)=
1
2
β0(t)+

∞∑
k=1

βk(t)Tk(x), (B 24)

and the components of the complex potential evaluated on the surface of the plate as

φ(z= x, t)=±
1
2

a0(t)

√
1− x
1+ x

±

∞∑
k=1

ak(t) sin kθ,

ψ(z= x, t)=
1
2

a0(t)+
∞∑

k=1

ak(t)Tk(x),

 (B 25)

the pressure difference across the surface of the plate is

1p(x, t)= a0(t)

√
1− x
1+ x

+ 2
∞∑

k=1

ak(t) sin kθ. (B 26)

The coefficients ak are obtained by applying the no-penetration condition,

∂ψ

∂x

∣∣∣∣
y=0

=−

(
∂

∂t
+

√
3〈R〉
〈S〉

∂

∂x

)2

Y. (B 27)

This does not yield a0, which is instead given by the Laplace domain equation

a0 =−

√
3〈R〉
〈S〉

C(V0 + V1)+

√
3〈R〉
〈S〉

V1. (B 28)

In the limit of a quiescent fluid (〈R〉/〈S〉 → 0), a0→ 0. Thus all of the coefficients
ak are determined by (B 27), which itself simplifies since the second term in the
parentheses is zero in the limit 〈R〉/〈S〉→ 0. We note that in this limit the only fluid
force on the plate is the force due to added mass.

Putting everything together, we get the following ordinary differential equation:

R̃∗β̈ + D2(S̃∗D2β)=−
1
〈R〉

AD−β̈, (B 29)

where β is the vector of coefficients βk, D is the spectral representation of the
differentiation operator and D− is the spectral representation of the integration operator
that makes the first Chebyshev coefficient zero. Quantities with a tilde over them are
spectral representations of multiplication in space, i.e. G̃ = FGF−1, where F is the
linear operator that maps spatial coordinates to spectral coordinates. The operator A
maps the coefficients ak, which are the coefficients of a sine series for the pressure,
into the corresponding coefficients of a cosine series. If T s is an operator that takes
us from the x-domain to the sine domain, and T c is an operator that takes us from
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the x-domain to the cosine domain, then A= T cT−1
s . Equation (B 29) can be written

in state-space form as

d
dt

[
β

β̇

]
=

 0 I

−

(
R̃∗ +

1
〈R〉

AD−
)−1

D2S̃∗D2 0

 [β
β̇

]
. (B 30)

When numerically solving the system, the infinite series are truncated to finite series.
In order to incorporate the four boundary conditions into (B 30), the last four rows of
the differential equation for β̈ are replaced by the boundary conditions. This is fine to
do since the last four rows read β̈k = 0 due to four applications of the differentiation
operator D. The system is then

d
dt

[
I 0
0 I−4

] [
β

β̇

]
=

 0 I

−

(
R̃∗ +

1
〈R〉

AD−
)−1

D2S̃∗D2 0

 [β
β̇

]
, (B 31)

where I−4 is the identity matrix with the last four diagonals being zeros. The last four
rows of the right-hand side are replaced by the boundary conditions. We now have a
generalized eigenvalue problem to solve for the eigenvalues of the system.

Appendix C. Some useful formulas
The following is a collection of useful definitions and formulas from Moore (2017)

for the Chebyshev method employed here. The (interior) Gauss–Chebyshev points are

xn = cos θn, θn =
π(2n+ 1)
2(N + 1)

, for n= 0, 1, . . . ,N. (C 1)

Consider a function f (x) interpolated at these points by the polynomial pN(x) of degree
N,

f (xn)= pN(xn), for n= 0, 1, . . . ,N,

PN(xn)=
1
2

b0 +

N∑
k=1

bkTk(x).

 (C 2)

On the θ -grid this is

f (xn)=
1
2

b0 +

N∑
k=1

bk cos kθn, for n= 0, 1, . . . ,N. (C 3)

Thus we may use the fast discrete cosine transform to transform between a function’s
values on the collocation points, f (xn), and the Chebyshev coefficients bk.

The antiderivative of pN(x) is

D−1pN(x)=
1
2

B0 +

N+1∑
k=1

BkTk(x),

Bk =
1
2k
(bk−1 − bk+1), for n= 1, 2, . . . ,N.

 (C 4)

Here, B0 is a free constant of integration.
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The derivative of pN(x) is

DpN(x)=
1
2

b′0 +
N∑

k=1

b′kTk(x),

b′N+1 = b′N = 0,
b′k = b′k+2 + 2(k+ 1)bk+1, for n=N − 1,N − 2, . . . , 0.

 (C 5)

Since the endpoints x=±1 are not part of the collocation grid, we give a formula
to evaluate the function at the endpoints,

pN(±1)=
1
2

b0 +

N∑
k=1

(±1)kbk. (C 6)
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