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Many swimming and flying animals are observed to cruise in a
narrow range of Strouhal numbers, where the Strouhal number
St = 2fA/U is a dimensionless parameter that relates stroke fre-
quency f , amplitude A, and forward speed U. Dolphins, sharks,
bony fish, birds, bats, and insects typically cruise in the range
0.2 < St < 0.4, which coincides with the Strouhal number range
for maximum efficiency as found by experiments on heaving and
pitching airfoils. It has therefore been postulated that natural
selection has tuned animals to use this range of Strouhal numbers
because it confers high efficiency, but the reason why this is so
is still unclear. Here, by using simple scaling arguments, we argue
that the Strouhal number for peak efficiency is largely determined
by fluid drag on the fins and wings.
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Swimming and flying animals across many species and scales
cruise in a relatively narrow range of Strouhal numbers

0.2<St < 0.4 (1, 2). The Strouhal number St = 2fA/U is a
dimensionless parameter that relates stroke frequency f , stroke
amplitude A, and forward speed U . It has been hypothesized
that for animals that range widely or migrate over long distances,
natural selection should favor swimming and flying motions of
high propulsive efficiency, and so the kinematics, described by
the Strouhal number, should be tuned for high propulsive effi-
ciency. Indeed, the cruising range of Strouhal numbers observed
in nature overlaps the range of Strouhal numbers experimen-
tally shown to result in high propulsive efficiency for simple
propulsors (1, 3, 4).

A typical efficiency curve for a simple propulsor is shown
in Fig. 1. We see that at low Strouhal numbers, the efficiency
rapidly rises with increasing Strouhal number, reaches a maxi-
mum, and then falls off relatively slowly with further increases
in Strouhal number. Here, the propulsive efficiency η is defined
as η=TU /P , where T is the mean net thrust that propels the
animal forward, U is the mean forward cruising speed, and P is
the mean mechanical power required to create the thrust.

What dictates the Strouhal number that leads to maximum
efficiency? Three prevailing theories have been proposed. The
first (1, 6) argues that peak efficiency occurs when the kinemat-
ics result in the maximum amplification of the shed vortices in
the wake, yielding maximum thrust per unit of input energy;
this phenomenon has been termed “wake resonance” (7). The
second theory (8) argues that the preferred Strouhal number is
connected with maximizing the angle of attack allowed, while
avoiding the shedding of leading edge vortices. The third (9)
holds that, for aquatic animals, the ratio of the tail beat ampli-
tude to the body length essentially dictates the Strouhal number
for cruise, since it requires a balance between thrust and drag.

Here, we offer a simple alternative explanation for the
observed peak in efficiency, and we also explain the rapid rise
in efficiency at low St and the more gradual decrease at high
St . Our explanation highlights the important role that fluid drag
plays in determining the efficiency behavior.

Consider a cruising animal, one that is moving at constant
velocity. We make the assumption that the thrust is produced

primarily by its propulsor (for example, caudal fin for a fish, fluke
for a mammal, wing for a bird) and that the drag is composed of
two parts: the drag due to its body (Db , proportional to the body
surface area), and an “offset” drag due to its propulsor (Do , pro-
portional to the propulsor frontal area projected over its range
of motion). More details are given below.

This decomposition is illustrated in Fig. 2, where the thrust-
producing propulsor is separated from the drag-producing body
and represented by an oscillating airfoil (10). To be clear, fliers
are distinct from swimmers in that fliers’ propulsors need to
produce lift to combat gravity, in addition to thrust to pro-
pel themselves forward. As far as steady forward cruising is
concerned, however, the physics of forward propulsion is not
affected by the additional requirement of lift (10).

We also simplify the motion of the propulsor to model it as a
combination of heaving (amplitude H ) and pitching (amplitude
Θ). Biologically relevant motions are ones where the heaving and
pitching motions are in phase or where the heaving motion leads
the pitching motion by 90◦ (4). In cruise, our model requires that
the thrust produced by the propulsor balances the total fluid drag
experienced by the body and the propulsor.

We now consider the performance (thrust, power, and effi-
ciency) of an isolated propulsor. For the net thrust T , we use
the scaling

T ∼ ρSpV
2−Do , [1]

where ρ is the density of the fluid, Sp is the area of the propulsor,
and V (∼ fA) is the characteristic speed of the transverse motion
of the propulsor. The V 2 scaling is derived in SI Appendix, where
it is also shown to be representative of biologically relevant flap-
ping motions. In addition, the scaling is supported by theory
(11, 12), empirical curve fits on fish performance (13, 14), and
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Fig. 1. A typical efficiency curve showing efficiency η as a function of St.
Data are for a heaving and pitching NACA0012 foil (5) (A/L = 0.19, and
heaving leads pitching by 90◦).

the performance of a large group of swimming animals (15). As
indicated above, we will assume that for a cruising animal the net
thrust of the propulsor balances the drag of the body Db , where
Db ∼ ρSbU

2, and Sb is the surface area of the body. Hence, for a
negligible offset drag,

St2∼Sb/Sp . [2]

Previous work has proposed that this thrust–drag balance alone
yields a constant Strouhal number (15). However, Eq. 2 shows
that this conclusion implicitly assumes that Do = 0 and that the
area ratio Sb/Sp remains constant, which will not hold across
the many different species that cruise in the preferred range
0.2<St < 0.4. To arrive at a more general result, we need to
understand the energetics determining swimming and flying.
The net thrust of the propulsor at peak efficiency then sets the
cruising speed.

For the power expended, we adopt the scaling

P ∼ ρSp fL
(
V 2−VhVθ

)
, [3]

where L is a characteristic length scale of the propulsor, and
Vh and Vθ are the transverse velocity scales characteristic of
the heaving and pitching motions, respectively. This scaling is
derived in SI Appendix, where further details are given. It is
based on established theory and analysis (11, 16, 17), and it
is corroborated by a large set of experiments (4). It derives from
the nonlinear interaction of the power produced by the propul-
sor velocity and its acceleration, an interaction that is critical to
our understanding of the large-amplitude motions observed in
nature.

We now consider the offset drag—that is, the drag of the
propulsor in the limit of vanishing f —which scales as

Do ∼ ρU 2Spg(Θ). [4]

Here, Θ is the amplitude of the pitching motion, and the function
g(Θ) is positive when Θ = 0 and increases with Θ (3, 4). The off-
set drag can be viewed as scaling with the projected frontal area
of the propulsor, as in bluff body flows (18).

Hence, we arrive at

η=
TU

P
∼ V 2U − b1U

3g

fL(V 2−VhVθ)
, [5]

where the constant b1 sets the relative importance of the drag
term compared with the thrust term (in general, we expect b1
to be a function of Reynolds number Re = ρLU /ν, where µ is
the fluid viscosity). The efficiency can be recast in terms of the
Strouhal number St = 2fA/U and a dimensionless amplitude
A∗=A/L, so that

η∼
A∗

(
St2− b1g

)
St3 (1−H ∗Θ∗)

. [6]

The other nondimensional terms, H ∗=H /A and Θ∗=LΘ/A,
represent, respectively, the amplitudes of the heaving and
pitching motions relative to the total amplitude of motion.

We see immediately that to achieve high efficiency, the dimen-
sionless amplitude A∗ should be large. This observation is consis-
tent with the argument put forth by R. M. Alexander, where he
proposed that large-amplitude motions are more efficient than
small-amplitude motions (19). However, there are two potential
limiting factors. First, as A∗ becomes larger, the instantaneous
angle of attack increases, dynamic stall effects may become
important, and the drag model given here for Do will be inval-
idated. Second, animal morphology naturally sets a limit as to
how large they can make A∗. For efficient cruising, therefore,
A∗ should be as large as an animal’s morphology allows, while
avoiding dynamic stall at all times. Our argument is consistent
with the experimental observations made by Saadat et al. (9) in
what we called the third theory. The author of ref. 8 (the second
theory) similarly argues for large-amplitude motions, although
she argues that large-amplitude motions are connected to the
optimal Strouhal number, whereas we argue that, all else fixed,
the amplitude sets the total efficiency, but it does not dictate the
optimal Strouhal number.

What about the optimal Strouhal number? When there is no
offset drag (b1 = 0), the efficiency increases monotonically as St
decreases, and the optimal efficiency is achieved in the limit
St→ 0. However, in the presence of offset drag (b1 6=0), the
efficiency will become negative as St→ 0 because the drag dom-
inates the thrust produced by the propulsor. In general, Eq. 6
gives negative efficiencies at low St , a rapid increase with St to
achieve a positive peak value at St =

√
3b1g , and a subsequent

Fig. 2. Swimmers and fliers can be decomposed into thrust-producing
(orange) and drag-producing (blue) parts, with the propulsor aptly
represented by an oscillating airfoil.
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Fig. 3. Efficiency η as a function of St. Data are as given in Fig. 1 for a
heaving and pitching NACA0012 foil (5). Solid lines are given by Eq. 6 with a
fixed proportionality constant of 0.155. The drag constant, b1, is set to 0.5,
0.35, 0.23, 0.15, 0.1, and 0.05 as the colors vary from dark to light, and we
have set g(Θ) = Θ. The proportionality constant and the value of b1 corre-
sponding to the experimental data were calculated by a total least squares
fit to the data.

slow decrease with further increase in St as the influence of drag
becomes weaker. The comparison between the form given by
Eq. 6 and the data originally shown in Fig. 1 makes this clear,
as displayed in Fig. 3. The offset drag is crucial in determining
the low St behavior and in setting the particular St at which the
peak efficiency occurs. Note that the maximum value of the effi-
ciency is directly related to the value of the drag constant b1,
which further emphasizes the critical role of the drag term in
determining the efficiency behavior. The amplification of shed
vortices described in the wake resonance theory (the first the-
ory) may simply arise as a signature of the efficient production of
net thrust, but this is purely speculative.

Finally, we consider the composition of the motion—that is,
the relative amounts of heaving and pitching. As shown in SI
Appendix, for biologically relevant flapping motions, the denom-
inator of Eq. 6 is minimized (and hence efficiency is maximized)
when H =LΘ. In other words, optimally efficient propulsors
should have heaving and pitching motions that contribute equally
to the total motion. When we also take the numerator of Eq. 6
into account, we actually expect the heaving contribution to be
a little larger because the offset drag is dominated by pitch. We

are not aware of biological measurements that would allow us to
test the optimal heaving and pitching balance, so at this point it
remains a hypothesis.

We leave the reader with a final thought. We expect that the
relative importance of the drag, captured by b1, will depend on
the Reynolds number. Our drag model is similar to that for a
bluff body, such as a sphere or cylinder, so we expect b1 will be
large at small Reynolds numbers and decrease as the Reynolds
number increases until it reaches about 1,000, above which the
drag will be almost constant (at least for Re < 2× 105, although
biological measurements imply that the drag may remain con-
stant up to Re = 108) (15, 20). Therefore, at low Reynolds
numbers, the location of the peak efficiency will change with
Reynolds number: As the Reynolds number increases, the opti-
mal St will decrease, until b1 reaches its asymptotic value at a
sufficiently high Reynolds number. Our conclusion is consistent
with biological measurements (at least for swimmers), where the
preferred Strouhal number appears to decrease as the Reynolds
number increases, until it reaches an asymptotic value (15). This
further substantiates our claim that the presence of fluid drag on
the propulsor is the crucial factor in creating an efficiency peak,
which dictates the cruising conditions of swimming and flying ani-
mals. In other words, energetic considerations set the kinematics
of the propulsor to the most efficient one, and the net thrust of
the propulsor at peak efficiency balances the drag of the body to
set the cruising speed.

Materials and Methods
The experimental setup is the same as described by Van Buren et al. (4).
Experiments on a heaving and pitching airfoil were conducted in a water
tunnel with a 0.46× 0.3× 2.44 m test section, with the tunnel velocity set
to U = 0.1 m/s. A teardrop airfoil of chord L = 0.08 m, thickness 0.008 m,
and span 0.279 m was used, yielding a chord-based Reynolds number of
Re = 8000.

Heaving motions were generated by a linear actuator (Linmot PS01-23×
80F-HP-R), pitching motions about the leading edge were generated by a
servo motor (Hitec HS-8370TH), and both were measured by encoders. The
heaving and pitching motions were sinusoidal, as described in SI Appendix,
Eqs. S1 and S2, with frequencies f = 0.2 to 0.8 Hz every 0.1 Hz, heav-
ing amplitudes H = 0.01, 0.02, 0.03 m, pitching amplitudes Θ = 5◦, 10◦, 15◦,
and phase angles φ= 0◦ and 90◦, with experiments performed on all
combinations of the kinematic parameters.

The forces and moments imparted by the water on the airfoil were mea-
sured by a six-component sensor (ATI Mini40) at a sampling rate of 100 Hz.
The force and torque resolutions were 5× 10−3 N and 1.25× 10−4 N·m,
respectively, in the streamwise and cross-stream directions, and 10−2 N and
1.25× 10−4 N·m, respectively, in the spanwise direction. Each case was
run for 30 cycles, with the first and last five cycles used for warmup and
cooldown. All sensors were zeroed before every case.
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Supporting Information Text11

Thrust and power. Here we derive simple expressions for the mean thrust and power, as used in the main text, by considering
sinusoidal heaving and pitching motions described by

h(t) = H sin(2πft), [1]
θ(t) = Θ sin(2πft+ φ), [2]

where pitch leads heave by a phase angle φ. In our previous work (1), we used aerodynamic theory to derive the following
expressions for the mean thrust and power coefficients produced by a heaving and pitching foil:

CT = c1St
2 + c2SthΘ sinφ+ c3StθΘ− c4Θ, [3]

CP = c5St
2 + c6f

∗SthStθ sinφ+ c7SthΘ sinφ+ c8f
∗St2h + c9f

∗St2θ + c10StθΘ, [4]

where Sth = 2fH/U , Stθ = 2fLΘ/U , and the reduced frequency f∗ = fL/U . Also, CT = 2T/ρSpU2 is the thrust coefficient,12

and CP = 2P/ρSpU3 is the power coefficient. Note that the term c4Θ represents the drag coefficient for the propulsor. These13

expressions were shown to collapse experimental data on a simple teardrop foil for all values of φ.14

For the biologically-relevant phase angles φ = {0◦, 270◦}, we find that the c2 and c3 terms in thrust, and the c10 and c7
terms in power, are small relative to the other terms and can be neglected. For power, we use St2 = St2h + St2θ + 2SthStθ cosφ.
As a result, we now propose, for φ = {0◦, 270◦},

CT = c1St
2 − c4Θ, [5]

CP = a1St
2 + a2f

∗St2 + a3f
∗SthStθ. [6]

We have introduced new constants ai to avoid confusion with the previous constants ci in the power. All signs have been
absorbed into the constants. Note that we now have the same thrust and power expressions for both phases. Based on the
numerical values of the constants in Eq. (5)–Eq. (6), as found from the experimental data, we can propose a further reduction,
where

CT = c1St
2 − c4Θ, [7]

CP = a2f
∗ (
St2 − SthStθ

)
. [8]

Plotting the thrust and power data against expressions Eq. (7)–Eq. (8) yields figure S1. The collapse using these reduced15

models is as good as obtained by Van Buren et al.(1) using the full expressions given by Eq. (3) and Eq. (4).16

Equations Eq. (7) and Eq. (8) can be written dimensionally, so that, for φ = {0◦, 270◦},
T ∼ ρSpV 2 −Do, [9]
P ∼ ρSpfL(V 2 − VhVθ), [10]

where Do is the drag offset.17

Motion composition. The total amplitude for a motion with arbitrary phase is18

A2 = H2 + 2HLΘ cosφ+ L2Θ2. [11]19

For biologically-relevant phases, we then have
φ = 0◦ : A = H + LΘ, [12]

φ = 270◦ : A2 = H2 + L2Θ2. [13]

For both phases, HLΘ/A2 is maximized when H = LΘ, minimized when one of them is zero, and always less than 1. (This20

can be shown using calculus for φ = 0◦, and using right triangles for φ = 270◦.) So for both phases, the denominator of Eq. (6)21

in the main text is positive, and is minimized when the heave and pitch amplitudes are equal.22

Materials and Methods23

The experimental setup is the same as described by Van Buren et al. (1). Experiments on a heaving and pitching airfoil24

were conducted in a water tunnel with a 0.46 × 0.3 × 2.44 m test section, with the tunnel velocity set to U = 0.1 m/s. A25

teardrop airfoil of chord L = 0.08 m, thickness 0.008 m, and span 0.279 m was used, yielding a chord-based Reynolds number26

of Re = 8000.27

Heaving motions were generated by a linear actuator (Linmot PS01-23 × 80F-HP-R), pitching motions about the leading edge28

were generated by a servo motor (Hitec HS-8370TH), and both were measured by encoders. The heaving and pitching motions29

were sinusoidal, as in Eq. (1)–Eq. (2), with frequencies f = 0.2 to 0.8 Hz every 0.1 Hz, heaving amplitudes H = 0.01, 0.02, 0.03 m,30

pitching amplitudes Θ = 5◦, 10◦, 15◦, and phase angles φ = 0◦ and 90◦, with experiments performed on all combinations of the31

kinematic parameters.32

The forces and moments imparted by the water on the airfoil were measured by a six-component sensor (ATI Mini40) at a33

sampling rate of 100 Hz. The force and torque resolutions were 5× 10−3 N and 1.25× 10−4 N·m, respectively, in the streamwise34

and cross-stream directions, and 10−2 N and 1.25× 10−4 N·m, respectively, in the spanwise direction. Each case was run for 3035

cycles, with the first and last five cycles used for warmup and cooldown. All sensors was zeroed before every case.36
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Fig. S1. Thrust and power data plotted against expressions Eq. (7)–Eq. (8) for φ = 0◦ (blue) and φ = 270◦ (orange). The coefficients are c1 = 4.65, c4 = 0.49,
a2 = 62.51.
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